Jump to content

50 Years Ago: Launch of Skylab 4, The Final Mission to Skylab


Recommended Posts

  • Publishers
Posted

The third and final crewed mission to the Skylab space station, Skylab 4, got underway on Nov. 16, 1973, with a thunderous launch from NASA’s Kennedy Space Center (KSC) in Florida. Docking eight hours later, astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue began a planned 56-day mission that program managers extended to a record-breaking 84 days. During their first month, as they adjusted to weightlessness and their new surroundings, they completed the first of four spacewalks. They began an extensive science program, investigating the effects of long-duration spaceflight on human physiology, examining the Sun, conducting observations of the Earth, as well as technology and student-led experiments. They began their systematic observations of recently discovered Comet Kohoutek as it approached the Sun.

Crew patch of the third and final crewed mission to Skylab Photo of the Skylab 4 crew of Gerald P. Carr, Edward G. Gibson, and William R. Pogue Photo of the Skylab 4 backup crew of Vance D. Brand, left, William B. Lenoir, and Don L. Lind
Left: Crew patch of the third and final crewed mission to Skylab. Middle: Official photo of the Skylab 4 crew of Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue. Right: The Skylab 4 backup crew of Vance D. Brand, left, William B. Lenoir, and Don L. Lind.

In January 1972, NASA announced the astronauts it had selected for the Skylab program. For Skylab 4, the third crewed mission and at the time planned to last 56 days, NASA named Carr as commander, Gibson as science pilot, and Pogue as pilot to serve as the prime crew, the first all-rookie prime crew since Gemini VIII in 1966. For the backup crew, NASA designated Vance D. Brand, William B. Lenoir, and Don L. Lind, who also served as the backup crew for Skylab 3. Brand and Lind would serve as the two-person crew for a possible rescue mission.

The S-IB first stage for the Skylab 4 mission’s SA-208 Saturn IB rocket arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida The two S-IVB second stages for the Skylab 4 SA-208 rocket, right, and the SA-209 Skylab rescue rocket sit side by side in the VAB Image of workers in the VAB stack the second stage onto the first stage for the Skylab 4 Saturn IB
Left: The S-IB first stage for the Skylab 4 mission’s SA-208 Saturn IB rocket arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Middle: The two S-IVB second stages for the Skylab 4 SA-208 rocket, right, and the SA-209 Skylab rescue rocket sit side by side in the VAB. Right: Workers in the VAB stack the second stage onto the first stage for the Skylab 4 Saturn IB.

Preparations at KSC for the Skylab 4 mission began on Nov. 4, 1971, with the arrival of the S-IVB second stage of the SA-208 Saturn IB rocket. Workers placed it in long-term storage in the Vehicle Assembly Building (VAB). The rocket’s S-IB first stage arrived on June 20, 1973. Workers in the VAB mounted it on Mobile Launcher 1 on July 31, adding the second stage later that same day.

Photo of the arrival of the Skylab 4 Command Module (CM), front, and Service Module, partly hidden at left, in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida Photo of Skylab 4 astronauts conduct an altitude test aboard their CM in the MSOB Photo of the rollout of the Skylab 4 vehicle from the Vehicle Assembly Building to Launch Pad 39B Photo of workers at Launch Pad 39B replace the eight stabilization fins on the Saturn IB rocket’s first stage
Left: The arrival of the Skylab 4 Command Module (CM), front, and Service Module, partly hidden at left, in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida. Middle left: The Skylab 4 astronauts conduct an altitude test aboard their CM in the MSOB. Middle right: Rollout of the Skylab 4 vehicle from the Vehicle Assembly Building to Launch Pad 39B. Right: Workers at Launch Pad 39B replace the eight stabilization fins on the Saturn IB rocket’s first stage.

Meanwhile, Command and Service Module-118 (CSM-118) for the mission arrived in KSC’s Manned Spacecraft and Operations Building (MSOB) on Feb. 10, 1973, where engineers placed it inside a vacuum chamber. The prime and backup crews conducted altitude tests of the CSM in early August. With the thruster problems aboard the Skylab 3 spacecraft docked to the space station, managers accelerated the processing flow for the Skylab 4 vehicle to enable a launch as early as Sept. 9 in case they had to implement a rescue mission. Workers mated CSM-118 to the Saturn rocket on Aug. 10 and rolled the stack to Launch Pad 39B four days later. By this time, the need for a rescue had diminished and the processing flow readjusted to enable a launch on need within nine days until the Skylab 3 splashdown on Sept. 25. Normal processing then resumed for a planned Nov. 9 launch, later adjusted to Nov. 11. Carr, Gibson, and Pogue entered their preflight health stabilization plan quarantine on Oct. 20. On Nov. 6, workers found hairline cracks in the mounting brackets of the Saturn IB’s stabilizing fins, requiring a slip of the launch date to Nov. 16 to complete their replacement at the pad. The Skylab 4 countdown began on Nov. 14, the day after the astronauts arrived at KSC.

Photo of Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr training in the Skylab training mockup Photo of Gibson, left, Carr, and Pogue display a model of the Skylab space station at the conclusion of their preflight press conference Photo of Gibson, left, Carr, and Pogue pose in front of a T-38 Talon aircraft at Ellington Air Force Base in Houston prior to their departure for NASA’s Kennedy Space Center in Florida for the launch
Left: Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr training in the Skylab training mockup. Middle: Gibson, left, Carr, and Pogue display a model of the Skylab space station at the conclusion of their preflight press conference. Right: Gibson, left, Carr, and Pogue pose in front of a T-38 Talon aircraft at Ellington Air Force Base in Houston prior to their departure for NASA’s Kennedy Space Center in Florida for the launch.

Photo of Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr enjoy the traditional prelaunch breakfast Carr, Gibson, and Pogue test the pressure integrity of their spacesuits before launch Photo of Carr, front, Gibson, and Pogue exit crew quarters to board the transfer van for the ride to Launch Pad 39B
Left: Skylab 4 astronauts William R. Pogue, left, Edward G. Gibson, and Gerald P. Carr enjoy the traditional prelaunch breakfast. Middle: Carr, front, Gibson, and Pogue test the pressure integrity of their spacesuits before launch. Right: Carr, front, Gibson, and Pogue exit crew quarters to board the transfer van for the ride to Launch Pad 39B.

Liftoff of Skylab 4
Liftoff of Skylab 4!

The third and final mission to the Skylab space station got underway on Nov. 16, 1973, with a thunderous liftoff from KSC’s Launch Pad 39B. Although officially planned as a 56-day mission for several years, mission managers had confidence of an extension to 84 days and planned accordingly, with the astronauts bringing additional food, supplies, and science experiments.

Photo of Skylab during the rendezvous and docking Three astronaut manikins wear the Skylab 4 crew’s flight overalls
Left: Skylab during the rendezvous and docking. Right: Left by the Skylab 3 crew before their departure from the station, three astronaut manikins wear the Skylab 4 crew’s flight overalls.

Eight hours after launch, and following two unsuccessful attempts, Carr hard docked the spacecraft to the space station. Pogue, who on Earth appeared resistant to all forms of motion sickness, developed a case of space motion sickness during the crew’s first evening, requiring several days to fully recover. This incident along with an overly packed timeline caused the astronauts to fall behind in accomplishing their tasks as they adjusted to weightlessness and learned their way around the large space station. The astronauts spent their first night in space aboard the Command Module, opening the hatch the next morning to begin reactivating Skylab. To their surprise, the station appeared to already have three occupants. As a joke, before they left the station in September, the Skylab 3 crew stuffed their successors’ flight suits with used clothing and left them in strategic places throughout the workshop. Carr, Gibson, and Pogue began settling into the routine aboard Skylab, preparing meals, exercising, and starting the large number of experiments. They continued the science program begun by the previous two Skylab crews, including biomedical investigations on the effects of long-duration space flight on the human body, Earth observations using the Earth Resources Experiment Package (EREP), and solar observations with instruments mounted on the Apollo Telescope Mount (ATM). With the prediction earlier in the year that newly discovered Comet Kohoutek would make its closest approach to the Sun in late December, scientists added cometary observations to the crew’s already busy schedule. The astronauts brought a Far Ultraviolet Electronographic Camera, the backup to the instrument deployed on the Moon during Apollo 16, to Skylab especially for observations of the comet, and used it for cometary photography during two spacewalks added to the mission.

Photo of Edward G. Gibson, left, William R. Pogue, and Gerald P. Carr prepare a meal in the Skylab wardroom Photo of Carr using the Thornton treadmill to exercise Carr “weighs” himself in weightlessness using the body mass measurement device
Left: Edward G. Gibson, left, William R. Pogue, and Gerald P. Carr prepare a meal in the Skylab wardroom. Middle: Carr uses the Thornton treadmill to exercise. Right: Carr “weighs” himself in weightlessness using the body mass measurement device.

One of the lessons learned from the first two Skylab missions indicated that the onboard bicycle ergometer alone did not provide enough exercise to maintain leg and back muscle mass and strength. To remedy this problem, physician and Skylab support astronaut Dr. William E. Thornton designed a makeshift treadmill that the third crew brought with them to the station. The treadmill device consisted of a teflon-coated aluminum plate bolted to the floor of the workshop. Bungee cords attached to the floor and to the ergometer harness supplied the downward force for the back and leg muscles with the astronauts sliding over the teflon-coated plate while walking or jogging in stocking feet. Because the exercise provided quite a strenuous workout, the crew dubbed it “Thornton’s revenge.” They also increased the overall amount of time they spent exercising.

Photo of William R. Pogue replaces film in the Apollo Telescope Mount during the mission’s first spacewalk Gerald P. Carr flies the Astronaut Maneuvering Unit Overall view showing the large volume of the Skylab Orbital Workshop
Left: William R. Pogue replaces film in the Apollo Telescope Mount during the mission’s first spacewalk. Middle: Gerald P. Carr flies the Astronaut Maneuvering Unit. Right: Overall view showing the large volume of the Skylab Orbital Workshop.

In addition to the heavy science experiment load, the astronauts spent the first week in orbit preparing for the first spacewalk of the mission. On Nov. 22, their seventh day in space and also Thanksgiving Day, Gibson and Pogue suited up and stepped outside the space station with Gibson exclaiming, “Boy, if this isn’t the great outdoors.” During this six-hour 33-minute spacewalk, they replaced film canisters in the ATM and deployed an experiment package on the ATM truss. They took photographs with a camera that had originally been intended for the airlock now blocked by the sunshade that the first crew deployed in May to help cool the station. Gibson and Pogue accomplished all the tasks planned for this first spacewalk. Back inside the station, the astronauts settled in for the first Thanksgiving meal in space. For their dinner, Carr selected prime rib, Gibson went with traditional turkey, and Pogue chose chicken.

The S-IB first stage for Saturn-IB SA-209, the Skylab 4 rescue mission, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center Photo of the S-IVB second stage for SA-209 inside the VAB Workers stack the Command and Service Module CSM-119, the Skylab 4 rescue spacecraft, atop SA-209 Image of the Skylab 4 rescue vehicle at Launch Pad 39B
Left: The S-IB first stage for Saturn-IB SA-209, the Skylab 4 rescue mission, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Middle left: The S-IVB second stage for SA-209 inside the VAB. Middle right: Workers stack the Command and Service Module CSM-119, the Skylab 4 rescue spacecraft, atop SA-209. Right: The Skylab 4 rescue vehicle at Launch Pad 39B.

The inclusion of two docking ports on the Skylab space station enabled an in-flight rescue capability for the first time in human spaceflight history. In case a failure of the docked CSM stranded the onboard three-person crew, a two-person crew would launch in a second Apollo spacecraft specially configured with two extra couches to return all five astronauts. For the first two Skylab missions, the rocket and spacecraft for the subsequent mission served as the potential rescue vehicle. The failure of two Service Module thruster groups during Skylab 3 nearly required the rescue capability. Since Skylab 4 was the final mission, NASA procured an additional Saturn IB rocket, SA-209, and Apollo spacecraft, CSM-119, for the rescue role. The spacecraft arrived at KSC on May 2, 1973, and workers placed it in storage in the MSOB. In September, the backup crew of Brand, Lenoir, and Lind completed altitude chamber tests with the CSM, although only Brand and Lenoir would fly any the rescue mission. The S-IVB second stage for Saturn IB SA-209 arrived at KSC on Jan. 12, 1972, and workers placed it in storage in the VAB. The S-IB first stage arrived on Aug. 20, 1973. Because only one Mobile Launcher included the milkstool to launch a Saturn IB, assembly of the rescue vehicle had to await its return from the launch pad the day after the Skylab 4 liftoff. Assembly of the rocket in the VAB began on Nov. 26, and workers topped the rocket off with the spacecraft four days later. The stacked vehicle rolled out to Launch Pad 39B on Dec. 3 where engineers prepared the vehicle so that after Dec. 20, it could support a launch within nine days, should the need arise. The vehicle remained at the pad until Feb. 14, 1974, six days after the Skylab 4 splashdown.

Gerald P. Carr monitors Edward G. Gibson during a lower body negative pressure test of his cardiovascular system Gibson works out on the bicycle ergometer during a test of his cardiopulmonary function Gibson in the rotating chair to test his vestibular system
Left: Gerald P. Carr monitors Edward G. Gibson during a lower body negative pressure test of his cardiovascular system. Middle: Gibson works out on the bicycle ergometer during a test of his cardiopulmonary function. Right: Gibson in the rotating chair to test his vestibular system.

To add to their packed timeline, one of the station’s three control moment gyros (CMGs) failed the day after the first spacewalk. Skylab used CMGs to control the station’s attitude without expending precious attitude control gas, a non-renewable resource heavily depleted early in the station’s life. Engineers on the ground worked out a plan to control the station’s attitude using only the two working CMGs, thereby enabling completion of the remaining science, especially the Earth resource passes and comet Kohoutek observations. Pogue made the first measurements of Comet Kohoutek on Nov. 23 from inside the station using a photometric camera brought to Skylab especially to observe the comet. The astronauts practiced flying the Astronaut Maneuvering Unit, a precursor of the Manned Maneuvering Unit used during the space shuttle program to retrieve satellites, inside the large dome of the workshop.

Image of Edward G. Gibson at the controls of the Apollo Telescope Mount Image of William R. Pogue, left, and Gerald P. Carr at the control panel for the Earth Resources Experiment package inside the Multiple Docking Adapter
Left: Edward G. Gibson at the controls of the Apollo Telescope Mount. Right: William R. Pogue, left, and Gerald P. Carr at the control panel for the Earth Resources Experiment package inside the Multiple Docking Adapter.

Image of a massive solar flare taken by one of the Apollo Telescope Mount instruments Earth Resources Experiment Package photograph of the San Francisco Bay area Crew handheld photograph of a cyclone in the South Pacific
Left: Image of a massive solar flare taken by one of the Apollo Telescope Mount instruments. Middle: Earth Resources Experiment Package photograph of the San Francisco Bay area. Right: Crew handheld photograph of a cyclone in the South Pacific.

On Dec. 13, the mission’s 28th day, program officials assessed the astronauts’ performance and the status of the station and fully expected that they could complete the nominal 56-day mission and most likely the full 84 days. Despite being overworked and often behind the timeline, Carr, Gibson, and Pogue had already accomplished 84 hours of solar observations, 12 Earth resources passes, 80 photographic and visual Earth observations, all of the scheduled medical experiments, as well as numerous other activities such as student experiments, and science demonstrations. The astronaut’s major concern centered around the timelining process that had not given them time to adjust to their new environment and did not take into account their on-orbit daily routine. Despite the crew sending taped verbal messages to the ground asking for help in fixing these issues, the problem persisted. Skylab 4 Lead Flight Director Neil B. Hutchinson later admitted that the ground team learned many lessons about timelining long duration missions during the first few weeks of Skylab 4.

For more insight into the Skylab 4 mission, read Carr’s, Gibson’s, and Pogue’s oral histories with the JSC History Office.

To be continued …

With special thanks to Ed Hengeveld for his expert contributions on Skylab imagery.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected Rocket Lab USA Inc. of Long Beach, California, to launch the agency’s Aspera mission, a SmallSat to study galaxy formation and evolution, providing new insights into how the universe works.
      The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity launch service task order awards during VADR’s five-year ordering period, with a maximum total contract value of $300 million.
      Through the observation of ultraviolet light, Aspera will examine hot gas in the space between galaxies, called the intergalactic medium. The mission will study the inflow and outflow of gas from galaxies, a process thought to contribute to star formation.
      Aspera is part of NASA’s Pioneers Program in the Astrophysics Division at NASA Headquarters in Washington, which funds compelling astrophysics science at a lower cost using small hardware and modest payloads. The principal investigator for Aspera is Carlos Vargas at the University of Arizona in Tucson. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.
      To learn more about NASA’s Aspera mission and the Pioneers Program, visit:
      https://go.nasa.gov/42U1Wkn
      -end-
      Joshua Finch / Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      joshua.a.finch@nasa.gov / tiernan.doyle@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Space Operations Mission Directorate Kennedy Space Center Launch Services Office Launch Services Program NASA Headquarters View the full article
    • By NASA
      The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland, former NASA astronaut Peggy Whitson, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and Tibor Kapu of Hungary.Credit: Axiom Space NASA will join a media teleconference hosted by Axiom Space at 10:30 a.m. EDT, Tuesday, May 20, to discuss the launch of Axiom Mission 4 (Ax-4), the fourth private astronaut mission to the International Space Station.
      Briefing participants include:
      Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space Sarah Walker, director, Dragon mission management, SpaceX Sergio Palumberi, mission manager, ESA (European Space Agency) Aleksandra Bukała, project manager, head of strategy and international cooperation, POLSA (Polish Space Agency) Orsolya Ferencz, ministerial commissioner of space research, HUNOR (Hungarian to Orbit) To join the call, media must register with Axiom Space by 12 p.m., Monday, May 19, at:
      https://bit.ly/437SAAh
      The Ax-4 launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket is targeted no earlier than 9:11 a.m., Sunday, June 8, from NASA’s Kennedy Space Center in Florida.
      During the mission aboard the space station, a four-person multi-national crew will complete about 60 research experiments developed for microgravity in collaboration with organizations across the globe.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
      The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 for eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Alexis DeJarnette
      Axiom Space, Houston
      alexis@axiomspace.com
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      New research suggests vast surface features on Venus called coronae continue to be shaped by tectonic processes. Observations of these features from NASA’s Magellan mission include, clockwise from top left, Artemis Corona, Quetzalpetlatl Corona, Bahet Corona, and Aine Corona.NASA/JPL-Caltech Using archival data from the mission, launched in 1989, researchers have uncovered new evidence that tectonic activity may be deforming the planet’s surface.
      Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.
      Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.
      Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.
      “Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”
      This artist’s concept of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae are the locations of several types of tectonic activity.NASA/JPL-Caltech/Peter Rubin As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.
      Mystery Coronae
      Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.
      “Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”
      The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.
      One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.
      These illustrations depict various types of tectonic activity thought to persist beneath Venus’ coronae. Lithospheric dripping and subduction are shown at top; below are and two scenarios where hot plume material rises and pushes against the lithosphere, potentially driving volcanism above it.Anna Gülcher, CC BY-NC On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.
      Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.
      Deciphering Venus
      This work marks the latest instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.
      While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.
      Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of.  Using its radio tracking system, the spacecraft will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.
      For more information about NASA’s VERITAS mission, visit:
      https://science.nasa.gov/mission/veritas/
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-068
      Share
      Details
      Last Updated May 14, 2025 Related Terms
      Magellan Jet Propulsion Laboratory Planetary Science Venus VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) Explore More
      6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
      Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 2 days ago 3 min read NASA Study Reveals Venus Crust Surprise
      New details about the crust on Venus include some surprises about the geology of Earth’s…
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

      At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

      “We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
      Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

      Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

      After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

      NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

      While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

      The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
      NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

      NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...