Jump to content

55 Years Ago: Eight Months Before the Moon Landing


Recommended Posts

  • Publishers
Posted

November 1968 proved pivotal to achieving the goal of landing a man on the Moon before the end of the decade. The highly successful Apollo 7 mission that returned American astronauts to space provided the confidence for NASA to decide to send the next flight, Apollo 8, on a trip to orbit the Moon in December. At NASA’s Kennedy Space Center (KSC) in Florida, the Saturn V rocket and the Apollo spacecraft for that mission sat on Launch Pad 39A undergoing tests for its upcoming launch. In the nearby Vehicle Assembly Building (VAB), the three stages of the Saturn V for the Apollo 9 mission sat stacked awaiting the addition of its spacecraft undergoing final testing. Also in the VAB, workers had begun stacking the Apollo 10 Saturn V, while the Apollo 10 spacecraft arrived for testing. As the Apollo 8 and 9 crews continued their training, NASA named the crew for Apollo 10 and announced the science experiments that the first Moon landing astronauts would deploy.

Image of President Lyndon B. Johnson, second from left, presents Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham with Exceptional Service Medals at the LBJ Ranch Entertainer Bob Hope, second from right, taped an episode of his show at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, with guests the “Voice of Mission Control” Paul P. Haney, left, Apollo 7 astronauts Schirra, Cunningham, and Eisele, and television star Barbara Eden The Apollo 7 Command Module on display at the Frontiers of Flight Museum at Dallas Love Field
Left: President Lyndon B. Johnson, second from left, presents Apollo 7 astronauts Walter M. Schirra, left, Donn F. Eisele, and R. Walter Cunningham with Exceptional Service Medals at the LBJ Ranch. Middle: Entertainer Bob Hope, second from right, taped an episode of his show at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, with guests the “Voice of Mission Control” Paul P. Haney, left, Apollo 7 astronauts Schirra, Cunningham, and Eisele, and television star Barbara Eden. Right: The Apollo 7 Command Module on display at the Frontiers of Flight Museum at Dallas Love Field.

Following their highly successful flight, Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham returned to Houston’s Ellington Air Force Base on Oct. 26. On Nov. 2, President Lyndon B. Johnson presented the astronauts with Exceptional Service Medals at the LBJ Ranch in Johnson City, Texas. Four days later, comedian Bob Hope filmed an episode of his weekly television variety show in the auditorium of the Manned Spacecraft Center (MSC), now the Johnson Space Center in Houston. Hope saluted the Apollo 7 astronauts in a skit that included actress Barbara Eden, star of the television series “I Dream of Jeannie” that featured fictional astronauts. Paul P. Haney, MSC Director of Public Affairs and the “Voice of Mission Control,” also participated in the skit. Following the recovery of Apollo 7, the prime recovery ship U.S.S. Essex sailed for Norfolk Naval Air Station in Virginia, where on Oct. 27 workers offloaded the Command Module (CM), and placed it aboard a cargo plane to fly it to California for return to its manufacturer, North American Rockwell Space Division in Downey, for postflight inspection. On Jan. 20, 1969, the Apollo 7 astronauts as well as their spacecraft took part in President Richard M. Nixon’s first inauguration parade. In 1970, NASA transferred the Apollo 7 spacecraft to the Smithsonian Institution that loaned it to the National Museum of Science and Technology in Ottawa, Canada, for display. Following its return to the United States in 2004, it went on display at the Frontiers of Flight Museum at Love Field in Dallas.

Image of the circumlunar trajectory of Apollo 8 Apollo 8 astronauts William A. Anders, left, James A. Lovell, and Frank Borman during a press conference shortly after the announcement of their mission to orbit the Moon Photo of Anders, left, Lovell, and Borman in the Command Module simulator
Left: The circumlunar trajectory of Apollo 8. Middle: Apollo 8 astronauts William A. Anders, left, James A. Lovell, and Frank Borman during a press conference shortly after the announcement of their mission to orbit the Moon. Right: Anders, left, Lovell, and Borman in the Command Module simulator.

On Nov. 12, 1968, NASA Headquarters put out the following statement: “The National Aeronautics and Space Administration today announced that the Apollo 8 mission would be prepared for an orbital flight around the Moon.” That momentous statement ended weeks of intense internal agency deliberations and public speculation about Apollo 8’s targeted mission. The original mission plan called for Apollo 8 to conduct the first test of the Lunar Module (LM) in Earth orbit, but when the LM fell behind schedule, NASA managers in August began contemplating sending the Apollo 8 crew on a lunar orbital test of the Command Module (CM). The decision hinged partly on a successful Apollo 7 mission, and with that milestone passed, NASA Administrator James E. Webb approved the daring plan. On only the second crewed Apollo mission, the first crew to launch on the Saturn V, and only the third launch of the mighty Moon rocket, with the second of those experiencing some serious anomalies, the decision weighed the risks against the benefits of achieving the Moon landing goal before the end of the decade. With the Dec. 21 launch date fast approaching, the Apollo 8 crew of Frank Borman, James A. Lovell, and William A. Anders and their backups Neil A. Armstrong, Edwin E. “Buzz” Aldrin, and Fred W. Haise had begun training for the lunar mission even before the official announcement. During a Nov. 16 press conference, Borman, Lovell, and Anders discussed their preparations for the historic mission. On Nov. 19, at KSC’s Launch Complex 39, engineers completed the Flight Readiness Test to validate the launch vehicle, spacecraft, and ground systems.

Photo of The Apollo 9 prime crew of James A. McDivitt, left, David R. Scott, and Russell L. Schweickart, not pictured, prepares for an altitude chamber test of their Command Module (CM) in the Manned Spacecraft Operations Building at NASA’s Kennedy Space Center in Florida Photo of McDivitt, emerging from the CM, Schweickart, at left in the raft, and Scott complete water egress training in the Gulf of Mexico Photo of The Apollo 9 backup crew of Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepares for their water egress training
Left: The Apollo 9 prime crew of James A. McDivitt, left, David R. Scott, and Russell L. Schweickart, not pictured, prepares for an altitude chamber test of their Command Module (CM) in the Manned Spacecraft Operations Building at NASA’s Kennedy Space Center in Florida. Middle: McDivitt, emerging from the CM, Schweickart, at left in the raft, and Scott complete water egress training in the Gulf of Mexico. Right: The Apollo 9 backup crew of Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepares for their water egress training.

The LM formed a critical component to the Moon landing effort. Delays in preparing LM-3 for flight resulted in the crewed test to slip to Apollo 9 in early 1969. The three stages of the Apollo 9 Saturn V stood stacked on Mobile Launcher 2 in High Bay 3 of the VAB. The Apollo 9 spacecraft components, CSM-104 and LM-3, continued testing in the KSC’s Manned Spacecraft Operations Building (MSOB). The prime crew of James A. McDivitt, David R. Scott, and Russell L. Schweickart, as well as their backups Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean completed several altitude chamber tests with CSM-104 during the month of November. On Nov. 30, workers placed LM-3 inside its Spacecraft LM Adapter, topping it with CSM-104 to complete the spacecraft for its Dec. 3 rollover to the VAB for mating with the Saturn V. McDivitt, Scott, and Schweickart conducted water egress training in the Gulf of Mexico near Galveston, Texas. On Nov. 25, workers aboard the Motor Vessel M/V Retriever lowered a mockup CM with the crew inside into the water in a nose-down position. Flotation bags inflated to right the spacecraft to a nose-up position. The astronauts then exited the capsule onto life rafts and recovery personnel hoisted them aboard a helicopter. Backups Conrad, Gordon, and Bean completed the test on Dec. 6.

Photo of The Apollo 10 prime crew of Eugene A. Cernan, left, John W. Young, and Thomas P. Stafford Photo of the Apollo 10 backup crew of L. Gordon Cooper, Edgar D. Mitchell, and Donn F. Eisele
Left: The Apollo 10 prime crew of Eugene A. Cernan, left, John W. Young, and Thomas P. Stafford. Right: The Apollo 10 backup crew of L. Gordon Cooper, Edgar D. Mitchell, and Donn F. Eisele.

On Nov. 13, NASA announced the crew for the Apollo 10 mission planned for the spring of 1969. The fourth crewed Apollo mission would involve the launch of a CM and LM on a Saturn V rocket. Depending on the success of earlier missions, Apollo 10 planned to test the CM and LM either in Earth orbit or in lunar orbit, the latter a dress rehearsal for the actual Moon landing likely to follow on Apollo 11. NASA designated Thomas P. Stafford, John W. Young, and Eugene A. Cernan as the prime crew, the first all-veteran three person crew. The trio had served as the backup crew on Apollo 7 and had flight experience in the Gemini program. As backups, NASA assigned L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell. Cooper had flown previously on Mercury 9 and Gemini VIII, Eisele had just returned from Apollo 7, while this marked the first crew assignment for Mitchell. As support crew members, NASA named Joe H. Engle, James B. Irwin, and Charles M. Duke.

Photo of the Apollo 10 Command Module, left, and Service Module arrive at NASA’s Kennedy Space Center (KSC) in Florida Photo of the Apollo 10 S-IC first stage arrives at KSC’s Vehicle Assembly Building (VAB). Workers in the VAB stack the Apollo 10 first stage on its Mobile Launcher
Left: The Apollo 10 Command Module, left, and Service Module arrive at NASA’s Kennedy Space Center (KSC) in Florida. Middle: The Apollo 10 S-IC first stage arrives at KSC’s Vehicle Assembly Building (VAB). Right: Workers in the VAB stack the Apollo 10 first stage on its Mobile Launcher.

Flight hardware in support of Apollo 10 continued to arrive at KSC. Following delivery of LM-4 in October, on Nov. 2 workers mated its two stages and placed the vehicle in one of the MSOB’s altitude chambers. Stafford and Cernan carried out a sea level run on Nov. 22. The CM-106 and SM-106 for Apollo 10 arrived at KSC on Nov. 23 and workers trucked them to the MSOB where they mated the two modules three days later. In the VAB, the Saturn V’s S-IC first stage arrived on Nov. 27 and workers erected it on Mobile Launcher 3 in High Bay 2, awaiting the arrival of the upper stages.

A mockup of the laser ranging retroreflector (LRRR) experiment A mockup of the passive seismic experiment package (PSEP) A mockup of the solar wind composition (SWC) experiment A suited technician deploys mockups of the Apollo 11 experiments – the SWC, far left, the PSEP, and the LRRR, during a test session
Left: A mockup of the laser ranging retroreflector (LRRR) experiment. Middle left: A mockup of the passive seismic experiment package (PSEP). Middle right: A mockup of the solar wind composition (SWC) experiment. Right: A suited technician deploys mockups of the Apollo 11 experiments – the SWC, far left, the PSEP, and the LRRR, during a test session.

On Nov. 19, NASA announced that when Apollo astronauts first land on the Moon, possibly as early as during the Apollo 11 mission in the summer of 1969, they would deploy three scientific experiments – a passive seismometer experiment package (PSEP), a laser ranging retro-reflector (LRRR), and a solar wind composition (SWC) experiment – during their 2.5-hour excursion on the lunar surface. The PSEP will provide information about the Moon’s interior by recording any seismic activity. The passive LRRR consists of an array of precision optical reflectors that serve as a target for Earth-based lasers for highly precise measurements of the Earth-Moon distance. The SWC consists of a sheet of aluminum foil that the astronauts deploy at the beginning of their spacewalk and retrieve at the end for postflight analysis. During the exposure, the foil traps particles of the solar wind, especially noble gases.

The Lunar Module Test Article-8 (LTA-8) inside Chamber B of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston Astronaut James B. Irwin inside LTA-8 during one of the altitude runs Workers remove LTA-8 from SESL’s Chamber B at the conclusion of the altitude tests
Left: The Lunar Module Test Article-8 (LTA-8) inside Chamber B of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Astronaut James B. Irwin inside LTA-8 during one of the altitude runs. Right: Workers remove LTA-8 from SESL’s Chamber B at the conclusion of the altitude tests.

On Nov. 14, engineers in MSC’s Space Environment Simulation Laboratory (SESL) completed a series of altitude tests with LM Test Article-8 (LTA-8) to certify the vehicle for lunar missions. Astronaut Irwin and Grumman Aircraft Corporation consulting pilot Gerald P. Gibbons completed the final test, the last in a series of five that started on Oct. 14. Grumman pilot Glennon M. Kingsley paired up with Gibbons for three of the tests. During the tests that simulated various portions of the LM’s flight profile, the chamber maintained a vacuum simulating an altitude of about 150 miles and temperatures as low as -300o F. Strip heaters attached to the LTA’s surface provided the simulated solar heat. NASA transferred the LTA-8 to the Smithsonian Institution in 1978 and it is now on public display at Space Center Houston.

Depiction of Zond 6’s circumlunar trajectory
Depiction of Zond 6’s circumlunar trajectory. Image credit: courtesy RKK Energia.

A Proton rocket with a Zond spacecraft on the launch pad at the Baikonur Cosmodrome Zond 6 photographed the Earth as it looped around the Moon
Left: A Proton rocket with a Zond spacecraft on the launch pad at the Baikonur Cosmodrome. Right: Zond 6 photographed the Earth as it looped around the Moon. Image credits: courtesy RKK Energia.

Depiction of Zond 6’s skip reentry trajectory flown
Depiction of Zond 6’s skip reentry trajectory flown. Image credit: courtesy RKK Energia.

In another reminder that the race to the Moon still existed, on Nov. 10 the Soviet Union launched the Zond 6 spacecraft. Although it launched uncrewed, the Zond spacecraft, essentially a Soyuz without the forward orbital compartment and modified for flights to lunar distances, could carry a crew of two cosmonauts. A cadre of cosmonauts trained for such missions. Similar to the Zond 5 mission in September, Zond 6 entered a trajectory that looped it around the Moon on Nov. 13, passing within 1,500 miles of the lunar surface. The spacecraft took photographs of the Moon’s near and far sides and of the distant Earth. As it neared Earth during its return journey, trouble developed aboard the spacecraft as a faulty hatch seal caused a slow leak and it began to lose atmospheric pressure. Ground controllers initially steadied the pressure loss and performed a final midcourse maneuver that allowed Zond 6 to perform a skip reentry to land in Soviet territory on Nov. 17. However, the spacecraft continued to lose pressure and a buildup of static electricity created a coronal discharge that triggered the spacecraft’s soft landing rockets to fire and cut the parachute lines while it was still descending through 5,300 meters altitude. Although the capsule hit the ground at a high velocity, rescue forces were able to recover the film containers. The Soviets at the time did not reveal either the depressurization or the crash but claimed the flight was a successful circumlunar mission. With two apparently successful uncrewed circumlunar flights and the resumption of crewed missions with Soyuz 3 in October, these Soviet activities perhaps played a part in the decision to send Apollo 8 to the Moon.

News from around the world in November 1968:

Nov. 5 – Richard M. Nixon elected as the 37th U.S. President.

Nov. 5 – Shirley A. Chisolm of Brooklyn, New York, becomes the first African American woman elected to the U.S. Congress.

Nov 8 – The United States launches Pioneer 9 into solar orbit to monitor solar storms that could be harmful to Apollo astronauts traveling to the Moon.

Nov. 13 – The HL-10 lifting body aircraft with NASA pilot John A. Manke at the controls made its first successful powered flight after being dropped from a B-52 bomber at Edwards Air Force Base in California’s Mojave Desert.

Nov. 14 – Yale University announces it is going co-ed beginning in the 1969-1970 academic year.

Nov. 22 – The Beatles release the “The Beatles” (better known as the White Album), the band’s only double album.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

      At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

      “We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
      Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

      Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

      After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

      NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

      While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

      The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
      NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

      NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
    • By NASA
      Researchers with NASA’s Exploration Research and Technology programs conduct molten regolith electrolysis testing inside Swamp Works at NASA’s Kennedy Space Center in Florida on Thursday, Dec. 5, 2024.NASA/Kim Shiflett As NASA works to establish a long-term presence on the Moon, researchers have reached a breakthrough by extracting oxygen at a commercial scale from simulated lunar soil at Swamp Works at NASA’s Kennedy Space Center in Florida. The achievement moves NASA one step closer to its goal of utilizing resources on the Moon and beyond instead of relying only on supplies shipped from Earth.
      NASA Kennedy researchers in the Exploration Research and Technology programs teamed up with Lunar Resources Inc. (LUNAR), a space industrial company in Houston, Texas, to perform molten regolith electrolysis. Researchers used the company’s resource extraction reactor, called LR-1, along with NASA Kennedy’s vacuum chamber. During the recent vacuum chamber testing, molecular oxygen was measured in its pure form along with the production of metals from a batch of dust and rock that simulates lunar soil, often referred to as “regolith,” in the industry.
      “This is the first time NASA has produced molecular oxygen using this process,” said Dr. Annie Meier, molten regolith electrolysis project manager at NASA Kennedy. “The process of heating up the reactor is like using an elaborate cooking pot. Once the lid is on, we are essentially watching the gas products come out.”
      During testing, the vacuum environment chamber replicated the vacuum pressure of the lunar surface. The extraction reactor heated about 55 pounds (25 kilograms) of simulated regolith up to a temperature of 3100°F (1700°C) until it melted. Researchers then passed an electric current through the molten regolith until oxygen in a gas form was separated from the metals of the soil. They measured and collected the molecular oxygen for further study.
      In addition to air for breathing, astronauts could use oxygen from the Moon as a propellant for NASA’s lunar landers and for building essential infrastructure. This practice of in-situ resource utilization (ISRU) also decreases the costs of deep space exploration by reducing the number of resupply missions needed from Earth.
      Once the process is perfected on Earth, the reactor and its subsystems can be delivered on future missions to the Moon. Lunar rovers, similar to NASA’s ISRU Pilot Excavator, could autonomously gather the regolith to bring back to the reactor system to separate the metals and oxygen.
      “Using this unique chemical process can produce the oxidizer, which is half of the propellant mix, and it can create vital metals used in the production of solar panels that in turn could power entire lunar base stations,” said Evan Bell, mechanical structures and mechatronics lead at NASA Kennedy.
      Post-test data analysis will help the NASA and LUNAR teams better understand the thermal and chemical function of full-scale molten regolith electrolysis reactors for the lunar surface. The vacuum chamber and reactor also can be upgraded to represent other locations of the lunar environment as well as conditions on Mars for further testing.
      Researchers at NASA Kennedy began developing and testing molten regolith electrolysis reactors in the early 1990s. Swamp Works is a hands-on learning environment facility at NASA Kennedy that takes ideas through development and into application to benefit space exploration and everyone living on Earth. From 2019 to 2023, Swamp Works developed an early concept reactor under vacuum conditions named Gaseous Lunar Oxygen from Regolith Electrolysis (GaLORE). Scientists at NASA’s Johnson Space Center in Houston conducted similar testing in 2023, removing carbon monoxide from simulated lunar regolith in a vacuum chamber.
      “We always say that Kennedy Space Center is Earth’s premier spaceport, and this breakthrough in molten regolith electrolysis is just another aspect of us being the pioneers in providing spaceport capabilities on the Moon, Mars, and beyond,” Bell said.
      NASA’s Exploration Research and Technology programs, related laboratories, and research facilities develop technologies that will enable human deep space exploration. NASA’s Game Changing Development program, managed by the agency’s Space Technology Mission Directorate funded the project.
      View the full article
    • By Amazing Space
      Backyard Astronomy: LIVE Streaming the Moon 4Th MAy
    • By Amazing Space
      Backyard Astronomy: LIVE Streaming the Moon 3rd May
  • Check out these Videos

×
×
  • Create New...