Jump to content

Recommended Posts

  • Publishers
Posted
A view from Skylab's airlock hatch, looking down the length of the orbiting workshop. Skylab has a hexagon shape, with metal mesh floors that you can see through. Equipment lines the walls, and at center, two astronauts, Edward G. Gibson (left, in a white t-shirt) and Jerry P. Carr (right, in a brown t-shirt) smile for the camera. Also in frame are parts of three spacesuits.
NASA / William R. Pogue

Astronaut William R. Pogue, Skylab 4 pilot, recorded this wide scene of his crewmates, astronauts Edward G. Gibson (left), science pilot, and Jerry P. Carr (right), commander, on the other end of the orbital workshop on Feb. 1, 1974. Also in the frame are parts of three spacesuits, used on several EVA sessions during the third and final mission on the Skylab space station.

Skylab 4 launched on Nov. 16, 1973. Pogue, Gibson, and Carr were the first all-rookie crew since Gemini 8 in 1966. The crew continued the science program begun by the previous two Skylab crews, including biomedical investigations on the effects of long-duration space flight on the human body, Earth observations using the Earth Resources Experiment Package, and solar observations with instruments mounted on the Apollo Telescope Mount. Added to their science program were observations of the comet Kohoutek, discovered earlier in the year and predicted to make its closest approach to the Sun in December.

Watch a recap of Skylab’s legacy as a major stepping stone to the successful construction and operation of the International Space Station and future long-duration human missions to asteroids, Mars and other destinations.

Image Credit: NASA/William R. Pogue

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By NASA
      The Artemis I SLS (Space Launch System) rocket and Orion spacecraft is pictured in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida before rollout to launch pad 39B, in March 2022.Credit: NASA/Frank Michaux Media are invited to see NASA’s fully assembled Artemis II SLS (Space Launch System) rocket and Orion spacecraft in mid-October before its crewed test flight around the Moon next year.  
      The event at NASA’s Kennedy Space Center in Florida will showcase hardware for the Artemis II lunar mission, which will test capabilities needed for deep space exploration. NASA and industry subject matter experts will be available for interviews.
      Attendance is open to U.S. citizens and international media. Media accreditation deadlines are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Monday, Sept. 22. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Monday, Sept. 29. Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the mid-October activities when they are determined. NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact the NASA Kennedy newsroom at: 321-867-2468.
      Prior to the media event, the Orion spacecraft will transition from the Launch Abort System Facility to the Vehicle Assembly Building at NASA Kennedy, where it will be placed on top of the SLS rocket. The fully stacked rocket will then undergo complete integrated testing and final hardware closeouts ahead of rolling the rocket to Launch Pad 39B for launch. During this effort, technicians will conduct end-to-end communications checkouts, and the crew will practice day of launch procedures during their countdown demonstration test.
      Artemis II will send NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on an approximately 10-day journey around the Moon and back. As part of a Golden Age of innovation and exploration, Artemis will pave the way for new U.S.-crewed missions on the lunar surface ahead in preparation toward the first crewed mission to Mars.

      To learn more about the Artemis II mission, visit:
      https://www.nasa.gov/mission/artemis-ii
      -end-
      Rachel Kraft / Lauren Low
      Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov / lauren.e.low@nasa.gov  
      Tiffany Fairley
      Kennedy Space Center, Fla.
      321-867-2468
      tiffany.l.fairley@nasa.gov
      Share
      Details
      Last Updated Sep 10, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Orion Multi-Purpose Crew Vehicle Space Launch System (SLS) View the full article
    • By NASA
      National Institute of Aerospace NASA is calling on the next generation of collegiate innovators to imagine bold new concepts l pushing the boundaries of human exploration on the Moon, Mars, and beyond through the agency’s 2026 NASA Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  
      The RASC-AL challenge fuels innovation for aerospace systems concepts, analogs, and technology prototyping by bridging gaps through university engagement with NASA and industry. The competition is seeking U.S.-based undergraduate and graduate-level teams and their faculty advisors to develop new concepts to improve our ability to operate on the Moon and Mars. This year’s themes range from developing systems and technologies to support exploration of the lunar surface, to enhancing humanity’s ability to operate and return data from the surface of Mars.  
      “This competition is a unique opportunity for university students to play a role in the future of space innovation,” said Dan Mazanek, assistant branch head of NASA’s Exploration Space Mission Analysis Branch at NASA’s Langley Research Center in Hampton Virginia. “The RASC-AL challenge fuels creativity and empowers students to explore what’s possible. We’re excited for another year of RASC-AL and fresh ideas coming our way.”  
      Interested and eligible teams are invited to propose groundbreaking solutions and systems approaches that redefine how humans live and explore in deep space with relation to one of the following themes:  
      Communications, Positioning, Navigation, and Timing Architectures for Mars Surface Operations  Lunar Surface Power and Power Management and Distribution Architectures   Lunar Sample Return Concept  Lunar Technology Demonstrations Leveraging Common Infrastructure   Teams should express their intent to participate by submitting a non-binding notice of intent by Monday Oct. 13. Teams who submit a notice will be invited to a question-and-answer session with NASA subject matter experts on Monday Oct. 27.  
      The proposals, due Monday Feb. 23, 2026, are required to be seven-to-nine pages with an accompanying two-to-three-minute video. Proposals should demonstrate innovative solutions with original engineering and analysis in response to one of the four 2026 RASC-AL themes. Each team’s response should address novel and robust technologies, capabilities, and operational models that support expanding human’s ability to thrive beyond Earth. 
      Based on review of the team proposal and video submissions, in March, up to 14 teams will be selected to advance to the final phase of the competition – writing a technical paper, creating a technical poster, and presenting their concepts to a panel of NASA and industry experts in a competitive design review at the 2026 RASC-AL Forum in Cocoa Beach, Florida, beginning Monday June 1, 2026. 
      “The RASC-AL challenge enables students to think like NASA engineers—and in doing so, they often become the engineers who will carry NASA forward,” said Dr. Christopher Jones, RASC-AL program sponsor and Chief Technologist for the Systems Analysis and Concepts Directorate at NASA Langley. “The concepts they develop for this year’s competition will help inform our future strategies.”  
      Each finalist team will receive a $7,000 stipend to facilitate their full participation in the 2026 RASC-AL competition, and the top two overall winning teams will each be awarded an additional $7,000 cash prize as well as an invitation to attend and present their concept at an aerospace conference later in 2026. 
      The 2026 NASA RASC-AL competition is administered by the National Institute of Aerospace on behalf of NASA. The RASC-AL competition is sponsored by the agency’s Strategy and Architecture Office in the Exploration Systems Development Mission Directorate at NASA Headquarters, the Space Technology Mission Directorate (STMD), and the Systems Analysis and Concepts Directorate at NASA Langley. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing Program in STMD, manages the challenge. 
      For more information about the RASC-AL competition, including eligibility and submission guidelines, visit: https://rascal.nianet.org/. 
      View the full article
    • By NASA
      NASA Glenn Research Center High School Engineering Institute participants, left to right: Evan Ricchetti, Edan Liahovetsky, and Doris Chen, prepare to add weights to their rover to test the effectiveness of their wheel grouser designs on Friday, July 18, 2025. Credit: NASA/Jef Janis  This summer, NASA’s Glenn Research Center in Cleveland hosted the NASA Glenn High School Engineering Institute, a free, work-based learning experience designed to prepare rising high school juniors and seniors for careers in the aerospace workforce. 
      “The institute immerses students in NASA’s work, providing essential career readiness tools for future science, technology, engineering, and mathematics-focused academic and professional pursuits,” said Jerry Voltz of NASA Glenn’s Office of STEM Engagement. 
      Throughout the five-day sessions (offered three separate weeks in July), students used authentic NASA mission content and collaborated with Glenn’s technical experts. They gained a deeper understanding of the engineering design process, developed practical engineering solutions to real-world challenges, and tested prototypes to address key mission areas such as: 
      Acoustic dampening: How can we reduce noise pollution from jet engines?  Power management and distribution: How can we develop a smart power system for future space stations?  Simulated lunar operations: Can we invent tires that don’t use air?  NASA Glenn Research Center High School Engineering Institute participants, left to right: Adriana Pudloski, Anadavel Sakthi, Aditya Rohatgi, and Alexa Apshago, make modifications to the control system program for their rover on Friday, July 18, 2025. Credit: NASA/Jef Janis  Voltz said he hoped students left the program with three key takeaways: a deeper curiosity and excitement for STEM careers, firsthand insight into how cutting-edge technology developed in Cleveland contributes to NASA’s most prominent missions, and most importantly, a feeling of empowerment gained from engaging with some of NASA’s brightest minds in the field. 
      Return to Newsletter View the full article
    • By European Space Agency
      Earth orbit is becoming increasingly crowded. With over 11 000 active satellites and many thousands more expected in the coming years as well as over 1.2 million pieces of space debris greater than 1 cm, the risk of in-orbit collisions has turned into a daily operational concern. ESA is investing in automation technologies that can help satellite operators respond more effectively to collision risks.
      View the full article
  • Check out these Videos

×
×
  • Create New...