Jump to content

Joshua Abel: Delivering Roman’s Optical Telescope Assembly On Time, On Target


Recommended Posts

  • Publishers
Posted

5 min read

Joshua Abel: Delivering Roman’s Optical Telescope Assembly On Time, On Target

Joshua Abel, a man wearing white coveralls, a light blue hair net, and a light blue face mask, stands and poses with arms crossed in front of the Nancy Grace Roman Space Telescope's primary mirror. The mirror is shaped like a large silver disk, reflecting part of an American flag in its upper surface. Both Joshua and the mirror are inside a clean room, with pipes, shelves, stairs, and storage lining the walls, most in shades of light turquoise. Black and yellow caution tape forms a barrier around the telescope mirror.
Joshua Abel’s job as lead systems engineer for the Nancy Grace Roman Space Telescope’s Optical Telescope Assembly is “to deliver the assembly to the Roman observatory on time, within budget, and meeting all the technical requirements.”
Credit: NASA / Chris Gunn

Name: Joshua Abel

Title: Lead systems engineer for the Roman Space Optical Telescope Assembly

Formal Job Classification: Flight Systems Design Engineer

Organization: Instrument/Payload Systems Engineering Branch (Code 592), Mission Engineering and Systems Analysis Division, Engineering and Technology Directorate

Editor’s note: The Nancy Grace Roman Space Telescope’s Optical Telescope Assembly (OTA) includes the telescope’s primary and secondary mirrors, as well as supporting optics. The OTA enables the telescope to collect light that is then delivered to the observatory instruments.

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As the lead systems engineer for the Roman Space Telescope Optical Telescope Assembly, I am the government technical authority for procurement of the assembly, currently being manufactured by L3Harris Corporation in Rochester, New York. I am responsible for technical oversight of the vendor and verifying requirements.

What was your path to becoming an aerospace engineer at Goddard?

In 1999, I received a B.S. in interdisciplinary engineering focused on biomedical engineering from Purdue University. I began a master’s in biomedical engineering in bioheat transfer from Purdue University, but left in 2001 to work at Space Systems/Loral as a thermal systems engineer for satellites.

In 2005, I came to Goddard to work on Hubble Servicing Mission 4 and other NASA satellite servicing projects as a thermal systems engineer. In 2018, I began supporting the New Opportunities Office as a systems engineer, later joining the Instrument/Payload Systems Engineering Branch in my current role.

What are your goals as the lead systems engineer for the Roman Space Telescope Optical Telescope Assembly?

My goal is to deliver the assembly to the Roman observatory on time, within budget, and meeting all the technical requirements. I lead a small team of subject matter experts to review the vendor’s plans and help resolve any technical issues.

What is your management style?

I have a broad engineering background which helps me ask the right questions. I like to build consensus within the team and consolidate everyone’s work into a cohesive and understandable package, communicating complex issues both within the team and to management.

What makes Goddard special?

Everyone here loves their work and is focused on mission success. Even when conversations are difficult and the stakes are high, the emotion comes from caring so deeply. As a systems engineer, my goal is to listen to all ideas and help find the best direction for the project.

Joshua Abel, a man with short gray hair and a short dark gray beard, smiles and poses with his daughter for a selfie. Joshua wears a bright blue soccer polo and his daughter, a young girl with long dark hair, wears a white soccer jersey. They pose in the shade of a large tree, with yards, driveways and more trees visible behind them.
Systems engineer Joshua Abel is a team player at work, where he and his team review vendor plans and resolve technical issues for the Roman Space Telescope’s Optical Telescope Assembly, and at home, where he plays and coaches soccer.
Courtesy of Joshua Abel

What drives you?

I try to do what is needed and contribute to the best of my ability. I am energized when someone says they need help, be it fixing things that are broken or putting new things together. I’m always excited to continue to learn from the our expert team members and vendors.

I prefer working in a team. I like the dynamic environment of systems engineering, which is full of difficult problems that need a larger group to get enough perspectives to solve.

My background and skill mix are a little bit of everything. I enjoy English, communication, math, and science. These interests help me see different sides of a problem.

I like to take things that are slow and repetitive and make them faster and more interesting for myself and others. For example, I like to write Microsoft Excel programs to analyze thermal model data and other large databases to improve productivity. 

What advice would you give young engineers?

Take whatever project you are working on and exceed expectations. Don’t be afraid to ask questions. Early tasks for young engineers are not always the most exciting, but work to the best of your ability and try to learn as much as you can. Understand the job and try to see if it can be accomplished better or faster. If you approach every task with this attitude, the next opportunity will always come.

Build your network of experts and use their lessons learned to help your project, always returning that help when you can. Oftentimes the most important piece of knowledge you’ll be able to provide your team is simply knowing who to call to for advice. All of NASA’s engineers are always willing to help.

What are your hobbies?

I play and coach soccer and I also play guitar with my three children around our fire pit. Like every engineer, I’m continually working on home improvement projects for my favorite manager, my wife, who is a thermal systems engineer at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Nov 14, 2023
Editor
Jessica Evans
Contact
Rob Garner
rob.garner@nasa.gov
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy 9th May
    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
    • By NASA
      One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
      This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
      Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
      There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
      This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
      “The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
      Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
      This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      301-286-1940
      Share
      Details
      Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 10 months ago View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read New Visualization From NASA’s Webb Telescope Explores Cosmic Cliffs
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex. Credits:
      NASA, ESA, CSA, STScI. In July 2022, NASA’s James Webb Space Telescope made its public debut with a series of breathtaking images. Among them was an ethereal landscape nicknamed the Cosmic Cliffs. This glittering realm of star birth is the subject of a new 3D visualization derived from the Webb data. The visualization, created by NASA’s Universe of Learning and titled “Exploring the Cosmic Cliffs in 3D,” breathes new life into an iconic Webb image.
      It is being presented today at a special event hosted by the International Planetarium Society to commemorate the 100th anniversary of the first public planetarium in Munich, Germany.
      The landscape of “mountains” and “valleys” known as the Cosmic Cliffs is actually a portion of the nebula Gum 31, which contains a young star cluster called NGC 3324. Both Gum 31 and NGC 3324 are part of a vast star-forming region known as the Carina Nebula Complex.
      Ultraviolet light and stellar winds from the stars of NGC 3324 have carved a cavernous area within Gum 31. A portion of this giant bubble is seen above the Cosmic Cliffs. (The star cluster itself is outside this field of view.)
      The Cliffs display a misty appearance, with “steam” that seems to rise from the celestial mountains. In actuality, the wisps are hot, ionized gas and dust streaming away from the nebula under an onslaught of relentless ultraviolet radiation.
      Eagle-eyed viewers may also spot particularly bright, yellow streaks and arcs that represent outflows from young, still-forming stars embedded within the Cosmic Cliffs. The latter part of the visualization sequence swoops past a prominent protostellar jet in the upper right of the image.
      Video: Exploring the Cosmic Cliffs in 3D
      In July 2022, NASA’s James Webb Space Telescope made history, revealing a breathtaking view of a region now nicknamed the Cosmic Cliffs. This glittering landscape, captured in incredible detail, is part of the nebula Gum 31 — a small piece of the vast Carina Nebula Complex — where stars are born amid clouds of gas and dust.
      This visualization brings Webb’s iconic image to life — helping us imagine the true, three-dimensional structure of the universe… and our place within it.
      Produced for NASA by the Space Telescope Science Institute (STScI) with partners at Caltech/IPAC, and developed by the AstroViz Project of NASA’s Universe of Learning, this visualization is part of a longer, narrated video that provides broad audiences, including youth, families, and lifelong learners, with a direct connection to the science and scientists of NASA’s Astrophysics missions. That video enables viewers to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      “Bringing this amazing Webb image to life helps the public to comprehend the three-dimensional structure inherent in the 2D image, and to develop a better mental model of the universe,” said STScI’s Frank Summers, principal visualization scientist and leader of the AstroViz Project.
      More visualizations and connections between the science of nebulas and learners can be explored through other products produced by NASA’s Universe of Learning including a Carina Nebula Complex resource page and ViewSpace, a video exhibit that is currently running at almost 200 museums and planetariums across the United States. Visitors can go beyond video to explore the images produced by space telescopes with interactive tools now available for museums and planetariums.
      NASA’s Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      NASA’s Universe of Learning is part of the NASA Science Activation program, from the Science Mission Directorate at NASA Headquarters. The Science Activation program connects NASA science experts, real content and experiences, and community leaders in a way that activates minds and promotes deeper understanding of our world and beyond. Using its direct connection to the science and the experts behind the science, NASA’s Universe of Learning provides resources and experiences that enable youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Explore more: Carina Nebula Complex from NASA’s Universe of Learning
      Read more: Webb’s view of the Cosmic Cliffs
      Listen: Carina Nebula sonification
      Read more: Webb’s star formation discoveries
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 07, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars The Universe View the full article
    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
  • Check out these Videos

×
×
  • Create New...