Jump to content

Indigenous Student Brings Skills, Perspective to NASA Internship


Recommended Posts

  • Publishers
Posted

5 min read

Indigenous Student Brings Skills, Perspective to NASA Internship

Alyssa Warrior poses outdoors and smiles at the camera. She is sitting at a wooden picnic table in front of a bright green bush. She is wearing a dark green collared shirt.
Alyssa Warrior, who is Onödowá’ga’(Seneca) and belongs to the Haudenosaunee Confederacy, was an intern at NASA’s Glenn Research Center in summer 2023.
Credit: NASA/Ellen Bausback

On hot, summer days when Alyssa Warrior was growing up, she spent her time outside by her home on the Seneca Nation Cattaraugus Reservation near Buffalo, New York. She lay in the creek to escape the boiling sun, ran through the woods with her sister and five brothers, picked raspberries and wild onions, and lounged in a hammock.

When night came, her father started a fire and told scary stories while hot dogs and s’mores sizzled. Her family sunk down in lawn chairs after the fire turned to ash and gazed up, searching for lights in the sky.

“Looking at stars was always my favorite thing,” Warrior said. “I think I’ve always been interested in the natural world.”

With a blanket wrapped around her, Warrior walked barefoot in the dewy grass, staying out long after her family retreated inside. Other nights, she lay with her face pressed against the sliding glass door in her living room, hoping to catch just one more glimpse of the sky.

“I was always like, ‘One more, just one more shooting star,’’ Warrior said. “I just couldn’t stop. I loved to see them.”

In summer 2023, Warrior – now a physics senior at the University at Buffalo – interned at NASA’s Glenn Research Center in Cleveland, where she used software to validate and verify a model of a control system that could be used in future hybrid-electric aircraft. Adjusting the model and combing over code for hours to make improvements reminded Warrior of her skywatching memories.

“At one point, I needed to stop,” Warrior said. “But I’d be thinking, well, maybe I’ll just make one more adjustment and that’ll help.”

Warrior, who is Onödowá’ga’(Seneca) and belongs to the Haudenosaunee Confederacy, never expected to come to NASA. But after attending an American Indian Science and Engineering Society (AISES) conference and meeting Glenn engineer Joseph Connolly, she was recruited as an intern.

Outreach is integral to bringing more Indigenous people to NASA, says Connolly, who shares Warrior’s Haudenosaunee background and has mentored a handful of other Indigenous interns during his 19 years at Glenn.

“I think one of the reasons that it’s really important to get more Indigenous people at NASA, and just people with different perspectives, is because the problems that we work on are ridiculously hard,” Connolly said. “If we have all of the smartest people, but they get trained the exact same way, sometimes you just don’t have the insights that can give you the ability to look at problems in a new way.”

Building connections with fellow Indigenous employees is another way to help inspire the next generation, Connolly says, and Warrior connected with many through an online Natives at NASA group.

“It’s been really great to see other Native people working here at NASA – people that looks like me or look like my family – because it’s not something I see or that I’m used to,” Warrior said. “Everyone I’ve met has held some sort of information or knowledge that has improved my time here and will improve my future.”

: A group of four students pose in front of a white metal building. On the side of the building is a NASA meatball logo, a sign that says, “NASA – D-site,” and a colorful SUSAN aircraft logo.
Alyssa Warrior (far right) poses with other summer 2023 interns outside a small-scale electrical lab at NASA’s Glenn Research Center.
Credit: Joe Connolly

Warrior sees a clear connection between Indigenous people and the STEM fields.

“I think a lot of Native people specifically are connected with nature and have an interest in learning from it,” she said. “I think that’s its own science.”

In addition, working on hybrid-electric aircraft and sustainability aligned with Warrior’s cultural values, she said.

“Within Native communities, that is very important,” Warrior said. “It’s not always just trying to go to space, it’s also just trying to improve the planet that we’re on now. “

Besides recruiting and speaking at conferences, NASA Glenn works with Cleveland organizations, like the Lake Erie Native American Council and the Cleveland Metroparks, to support Indigenous Peoples Day events and other gatherings. NASA also supports a high-powered rocket competition for Indigenous students called First Nations Launch. Within the agency, the Science Mission Directorate hosts monthly conversations with Indigenous scholars.

“It’s incredibly important to make sure that Alyssa and some of the other students see that these communities exist, because when I was getting started [in STEM], I had no idea they did,” Connolly said.

Along with continuing outreach, Warrior suggests that those at NASA and others seeking to connect with Indigenous people learn about Indigenous heritage and history.

“Those are all really important things to know before even trying to open your arms up to Native people because then you‘re aware of where they’re coming from and certain struggles that they face,” Warrior said. “That makes it easier to reach out.”

Warrior says she is proud to have been an intern at NASA and hopes she’ll inspire younger Indigenous people, like her nieces and nephews, to reach for the stars. She knows she’ll continue to draw on the lessons of the natural world as she pursues a future STEM career.

“It’s always with me, this mindset and maybe looking at things a little differently. I feel more comfortable outside, seeing green,” Warrior said. “I think it’s definitely affected who I am today. I’ve got to put my feet in the grass sometimes.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation Eclipses, Auroras, and the… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
      In the heart of Alaska’s winter, where the night sky stretches endlessly and the aurora dances across the sky in a display of ethereal beauty, nine undergraduate students from across the United States were about to embark on a transformative journey. These students had been active ‘NASA Partner Eclipse Ambassadors’ in their home communities, nine of more than 700 volunteers who shared the science and awe of the 2024 eclipse with hundreds of thousands of people across the country as part of the NASA Science Activation program’s Eclipse Ambassadors project. Now, these nine were chosen to participate in a once-in a lifetime experience as a part of the “Eclipses to Aurora” Winter Field School at the University of Alaska Fairbanks. Organized by the Astronomical Society of the Pacific and NASA’s Aurorasaurus Citizen Science project, supported by NASA, this program offered more than just lectures—it was an immersive experience into the wonders of heliophysics and the profound connections between the Sun and Earth.
      From January 4 to 11, 2025, the students explored the science behind the aurora through seminars on solar and space physics, hands-on experiments, and tours of cutting-edge research facilities like the Poker Flat Research Range. They also gained invaluable insight from Athabaskan elders, who shared local stories and star knowledge passed down through generations. As Feras recalled, “We attended multiple panels on solar and space physics, spoke to local elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
      For many students, witnessing the aurora was not only a scientific milestone, but a deeply personal and emotional experience. One participant, Andrea, described it vividly: “I looked to the darkest horizon I could find to see my only constant dream fulfilled before my eyes, so slowly dancing and bending to cradle the stars. All I could do, with my hands frozen and tears falling, I began to dream again with my eyes wide open.” Another student, Kalid, reflected on the shared human moment: “Standing there under the vast Alaskan sky… we were all just people, looking up, waiting for something magical. The auroras didn’t care about our majors or our knowledge—they brought us together under the same sky.”
      These moments of wonder were mirrored by a deeper sense of purpose and transformation. “Over the course of the week, I had the incredible opportunity to explore auroras through lectures on solar physics, planetary auroras, and Indigenous star knowledge… and to reflect on these experiences through essays and presentations,” said Sophia. The Winter Field School was more than an academic endeavor—it was a celebration of science, culture, and shared human experience. It fostered not only understanding but unity and awe, reminding everyone involved of the profound interconnectedness of our universe.
      The impact of the program continues to resonate. For many students, that one aurora-lit week in Alaska became a turning point in the focus of their careers. Sophia has since been accepted into graduate school to pursue heliophysics. Vishvi, inspired by the intersection of science and society, will begin a program in medical physics at the University of Pennsylvania this fall. And Christy, moved by her time at the epicenter of aurora research, has applied to the Ph.D. program in Space Physics at the University of Alaska Fairbanks—the very institution that helped spark her journey. Their stories are powerful proof that the Winter Field School didn’t just teach—it awakened purpose, lit new paths, and left footprints on futures still unfolding.
      Eclipse Ambassadors is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Participants at the Winter Field School are enjoying the trip to Anchorage, AK. Andy Witteman Share








      Details
      Last Updated May 14, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Auroras Eclipses Opportunities For Students to Get Involved Explore More
      4 min read Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning


      Article


      1 day ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      5 days ago
      6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Credit: NASA NASA has selected Rocket Lab USA Inc. of Long Beach, California, to launch the agency’s Aspera mission, a SmallSat to study galaxy formation and evolution, providing new insights into how the universe works.
      The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity launch service task order awards during VADR’s five-year ordering period, with a maximum total contract value of $300 million.
      Through the observation of ultraviolet light, Aspera will examine hot gas in the space between galaxies, called the intergalactic medium. The mission will study the inflow and outflow of gas from galaxies, a process thought to contribute to star formation.
      Aspera is part of NASA’s Pioneers Program in the Astrophysics Division at NASA Headquarters in Washington, which funds compelling astrophysics science at a lower cost using small hardware and modest payloads. The principal investigator for Aspera is Carlos Vargas at the University of Arizona in Tucson. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.
      To learn more about NASA’s Aspera mission and the Pioneers Program, visit:
      https://go.nasa.gov/42U1Wkn
      -end-
      Joshua Finch / Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      joshua.a.finch@nasa.gov / tiernan.doyle@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Space Operations Mission Directorate Kennedy Space Center Launch Services Office Launch Services Program NASA Headquarters View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
    • By NASA
      NASA Glenn Research Center’s Director Dr. Jimmy Kenyon, left, talks with a Youth Tech Academy Red Dragon participant at the FIRST Robotics Competition Buckeye Regional in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA’s Glenn Research Center in Cleveland supported the 26th annual FIRST Robotics Competition Buckeye Regional, April 3-6, at Cleveland State University’s Wolstein Center. This international engineering design challenge combines the excitement of sports with the rigors of STEM. 
      Mavericks Team participants adjust their robot prior to their turn to compete at the FIRST Robotics Competition Buckeye Regional in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn Center Director Dr. Jimmy Kenyon helped kick off this year’s event by addressing the student participants. He shared that NASA Glenn specializes in propulsion and communications, that the center is vital to the region and country, and that “the road to Moon and Mars goes through Ohio” thanks to the center’s contributions to the agency’s missions. He also highlighted several aerospace projects underway at the center and explained how engineering and math skills used in robotics apply to real-life engineering challenges.  
      Fifty-six teams of high school students competed in the robotics competition, which aims to inspire young people to be STEM leaders and innovators by engaging them in mentor-based engineering. 
      Members from the Argonauts Team cheer as their robot competes in the FIRST Robotics Competition Buckeye Regional at Cleveland State University in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn employees offered their time and expertise as mentors, machinists, or volunteers supporting FIRST Robotics teams leading up to the event as well as on competition day.  
      Return to Newsletter Explore More
      1 min read NASA Glenn Engineer Highlights Research for Hubble Servicing Missions 
      Article 21 seconds ago 1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 1 min ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      La clase de pasantía 2025 del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, frente al histórico avión X-1E expuesto en el centro. De izquierda a derecha, los estudiantes: Tyler Requa, Gokul Nookula, Madeleine Phillips, Oscar Keiloht Chavez Ramirez y Nicolas Marzocchetti. NASA/Steve Freeman Read this story in English here.
      ¿Sueñas con trabajar para la NASA y contribuir a la exploración y la innovación en beneficio de la humanidad? Los programas de pasantías de la agencia ofrecen a los estudiantes de secundaria y universitarios la oportunidad de avanzar en la misión de la NASA en aeronáutica, ciencia, tecnología y espacio.  
      Claudia Sales, Kassidy McLaughlin y Julio Treviño empezaron sus carreras como pasantes en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, donde siguen explorando los secretos del universo. Sus experiencias ponen de ejemplo el impacto a largo plazo de los programas STEM de la NASA. STEM es un acrónimo en inglés que hace referencia a las materias de ciencia, tecnología, ingeniería y matemáticas. 
      Claudia Sales, ingeniera jefa interina adjunta del X-59 de la NASA y líder de certificación de navegabilidad para la aeronave de investigación supersónica silenciosa, apoya las pruebas en tierra para los vuelos de Medidas de Investigación Acústica (ARM, por su acrónimo en inglés). La campaña de pruebas para evaluar las tecnologías que reducen el ruido de las aeronaves se llevó a cabo en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, en 2018.NASA/Ken Ulbrich Claudia Sales
      “Desde niña supe que quería trabajar para la NASA,” dijo Claudia Sales, ingeniera jefa adjunta en funciones del X-59 y líder de certificación de navegabilidad del avión supersónico silencioso experimental de la agencia.
      La trayectoria de Sales en la NASA comenzó en 2005 como pasante de Pathways, un programa de trabajo y estudio (cooperativo) de la NASA. Ella trabajó en las ramas de propulsión y estructuras y proyectos como el avión de investigación hipersónico X-43A (Hyper-X) y el vehículo de lanzamiento orbital reutilizable X-37, donde tuvo la oportunidad de realizar cálculos para estimaciones térmicas y análisis de trayectorias. También realizó trabajos de diseño en el taller de Fabricación Experimental de la NASA Armstrong. 
      “Mi sueño era formar parte de proyectos de investigación en vuelos únicos,” dijo Sales. “Mi mentor fue increíble al exponerme a una amplia variedad de experiencias y trabajar en algo singular que algún día se implementará en un vehículo aéreo para hacer del mundo un lugar mejor.” 
      Claudia Sales, ingeniera jefe interina adjunta del X-59 de la NASA y líder de certificación de aeronavegabilidad para el avión de investigación supersónico silencioso, se encuentra frente a un Gulfstream G-III, también conocido como Pruebas de Aviones de Investigación Subsónicos (SCRAT, por su acrónimo inglés). Sales apoyó las pruebas en tierra como conductor de pruebas para los vuelos de Medidas de Investigación Acústica (ARM, por su acrónimo inglés) en el Centro de Vuelos de Investigación Armstrong de la NASA en Edwards, California, en 2018.  NASA/Ken Ulbrich Ingeniera de sistemas de vuelo de la NASA, Kassidy Mclaughlin lleva a cabo pruebas ambientales en una paleta de instrumentación. La paleta se utilizó durante el proyecto Campaña Nacional 2020 de la NASA en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California. NASA/Lauren Hughes Kassidy McLaughlin
      Asimismo, Kassidy McLaughlin, ingeniera de sistemas de vuelo, descubrió que la mentoría y la experiencia práctica como pasante fueron clave para su desarrollo profesional. Actualmente ella dirige el desarrollo de una estación de control terrestre en la NASA Armstrong. 
      En la secundaria y la universidad, McLaughlin se inscribió a clases STEM, sabiendo que quería seguir una carrera en ingeniería. Animada por su madre a solicitar una pasantía en la NASA, la carrera de McLaughlin comenzó en 2014 como pasante de la Oficina de Participación STEM de la NASA Armstrong. Más adelante hizo la transición al programa Pathways.  
      “Mi mentor me dio las herramientas necesarias y me animó a hacer preguntas,” dijo McLaughlin. “Me ayudó a ver que era capaz de cualquier cosa si me lo proponía.” 
      Durante cinco rotaciones como pasante, ella trabajó en el proyecto Sistemas de Aeronaves no tripulados integrados en el Sistema Nacional del Espacio Aéreo (UAS in the NAS, por su acrónimo inglés). “Es una sensación muy gratificante estar en una sala de control cuando algo en lo que has trabajado está volando,” dijo McLaughlin. Esa experiencia la inspiró a seguir la carrera de ingeniería mecánica. 
      “La NASA Armstrong ofrecía algo especial en cuanto a la gente,” dijo McLaughlin. “La cultura en el centro es muy amable y todos son muy acogedores.” 
      Julio Treviño, ingeniero jefe de operaciones del proyecto Global Hawk SkyRange de la NASA, se para en frente de un avión F/A-18 de apoyo a misiones en el Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California. NASA/Joshua Fisher Julio Treviño
      Julio Treviño, ingeniero jefe de operaciones del proyecto Global Hawk SkyRange de la NASA, garantiza la navegabilidad a lo largo de las fases de planificación, integración y vuelo de sistemas y vehículos singulares. También es controlador de misión certificado, director de misión e ingeniero de pruebas de vuelo para varias aeronaves de la agencia. 
      Al igual que McLaughlin, Treviño comenzó su carrera en 2018 como pasante de Pathway en la rama de Dinámica y Controles en la NASA Armstrong. Esa experiencia le abrió el camino hacia el éxito tras graduarse en ingeniería mecánica. 
      “Como pasante, tuve la oportunidad de trabajar en el diseño y la creación de un modelo de batería para un avión totalmente eléctrico,” dijo Treviño. “Se publicó oficialmente como modelo de software de la NASA para que lo utilice cualquier persona en la agencia.” 
      Treviño también reconoce la cultura y la gente de la NASA como lo mejor de su pasantía. “Tuve mentores que me apoyaron mucho durante mi tiempo como pasante, y el hecho de que todos aqui realmente amen el trabajo que hacen es increíble,” él dijo.  
      2025 Application Deadlines
      Cada año, la NASA ofrece a más de 2,000 estudiantes la oportunidad de influir en la misión de la agencia a través de pasantías. Las fechas de solicitud para el otoño de 2025 es el 16 de mayo.  
      Para obtener más información sobre los programas de pasantías de la NASA, las fechas límite de solicitud y elegibilidad, visite https://www.nasa.gov/learning-resources/internship-programs/
      Share
      Details
      Last Updated May 12, 2025 EditorDede DiniusContactPriscila Valdezpriscila.valdez@nasa.govLocationArmstrong Flight Research Center Related Terms
      NASA en español Explore More
      4 min read El X-59 de la NASA completa las pruebas electromagnéticas
      Article 2 months ago 11 min read La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I
      Article 5 months ago 10 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 6 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...