Jump to content

NASA’s Juno Finds Jupiter’s Winds Penetrate in Cylindrical Layers


Recommended Posts

  • Publishers
Posted

5 min read

NASA’s Juno Finds Jupiter’s Winds Penetrate in Cylindrical Layers

NASA’s Juno captured this view of Jupiter
NASA’s Juno captured this view of Jupiter during the mission’s 54th close flyby of the giant planet on Sept. 7. The image was made with raw data from the JunoCam instrument that was processed to enhance details in cloud features and colors.
Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Tanya Oleksuik CC BY NC SA 3.0

The finding offers deeper insights into the long-debated internal structure of the gas giant.

Gravity data collected by NASA’s Juno mission indicates Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner, parallel to its spin axis. A paper on the findings was recently published in the journal Nature Astronomy.

The violent nature of Jupiter’s roiling atmosphere has long been a source of fascination for astronomers and planetary scientists, and Juno has had a ringside seat to the goings-on since it entered orbit in 2016. During each of the spacecraft’s 55  to date, a suite of science instruments has peered below Jupiter’s turbulent cloud deck to uncover how the gas giant works from the inside out.

One way the Juno mission learns about the planet’s interior is via radio science. Using NASA’s Deep Space Network antennas, scientists track the spacecraft’s radio signal as Juno flies past Jupiter at speeds near 130,000 mph (209,000 kph), measuring tiny changes in its velocity – as small as 0.01 millimeter per second. Those changes are caused by variations in the planet’s gravity field, and by measuring them, the mission can essentially see into Jupiter’s atmosphere.

Such measurements have led to numerous discoveries, including the existence of a dilute core deep within Jupiter and the depth of the planet’s zones and belts, which extend from the cloud tops down approximately 1,860 miles (3,000 kilometers).

Doing the Math

To determine the location and cylindrical nature of the winds, the study’s authors applied a mathematical technique that models gravitational variations and surface elevations of rocky planets like Earth. At Jupiter, the technique can be used to accurately map winds at depth. Using the high-precision Juno data, the authors were able to generate a four-fold increase in the resolution over previous models created with data from NASA’s trailblazing Jovian explorers Voyager and Galileo.

This illustration depicts findings that Jupiter’s atmospheric winds
This illustration depicts findings that Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner and parallel to its spin axis. The most dominant jet recorded by NASA’s Juno is shown in the cutout: The jet is at 21 degrees north latitude at cloud level, but 1,800 miles (3,000 kilometers) below that, it’s at 13 degrees north latitude.
NASA/JPL-Caltech/SSI/SWRI/MSSS/ASI/ INAF/JIRAM/Björn Jónsson CC BY 3.0

“We applied a constraining technique developed for sparse data sets on terrestrial planets to process the Juno data,” said Ryan Park, a Juno scientist and lead of the mission’s gravity science investigation from NASA’s Jet Propulsion Laboratory in Southern California. “This is the first time such a technique has been applied to an outer planet.”

The measurements of the gravity field matched a two-decade-old model that determined Jupiter’s powerful east-west zonal flows extend from the cloud-level white and red zones and belts inward. But the measurements also revealed that rather than extending in every direction like a radiating sphere, the zonal flows go inward, cylindrically, and are oriented along the direction of Jupiter’s rotation axis. How Jupiter’s deep atmospheric winds are structured has been in debated since the 1970s, and the Juno mission has now settled the debate.

“All 40 gravity coefficients measured by Juno matched our previous calculations of what we expect the gravity field to be if the winds penetrate inward on cylinders,” said Yohai Kaspi of the Weizmann Institute of Science in Israel, the study’s lead author and a Juno co-investigator. “When we realized all 40 numbers exactly match our calculations, it felt like winning the lottery.”

Along with bettering the current understanding of Jupiter’s internal structure and origin, the new gravity model application could be used to gain more insight into other planetary atmospheres.

Juno is currently in an extended mission. Along with flybys of Jupiter, the solar-powered spacecraft has completed a series of flybys of the planet’s icy moons Ganymede and Europa and is in the midst of several close flybys of Io. The Dec. 30 flyby of Io will be the closest to date, coming within about 930 miles (1,500 kilometers) of its volcano-festooned surface.

“As Juno’s journey progresses, we’re achieving scientific outcomes that truly define a new Jupiter and that likely are relevant for all giant planets, both within our solar system and beyond,” said Scott Bolton, the principal investigator of the Juno mission at the Southwest Research Institute in San Antonio. “The resolution of the newly determined gravity field is remarkably similar to the accuracy we estimated 20 years ago. It is great to see such agreement between our prediction and our results.”

More About the Mission

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott J. Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. Lockheed Martin Space in Denver built and operates the spacecraft.

More information about Juno is available at:

https://www.nasa.gov/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

Dana Bernstein
Weizmann Institute of Science
972-8-934-3856
dana.bernstein@weizmann.ac.il

2023-163

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      X-ray: NASA/CXC/CfA/Stroe, A. et al.; Optical: PanSTARRS; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk New observations from NASA’s Chandra X-ray Observatory and other telescopes have captured a rare cosmic event: two galaxy clusters have collided and are now poised to head back for another swipe at each other.
      Galaxy clusters are some of the largest structures in the Universe. Held together by gravity, they are monster-sized collections of hundreds or thousands of individual galaxies, massive amounts of superheated gas, and invisible dark matter.
      The galaxy cluster PSZ2 G181.06+48.47 (PSZ2 G181 for short) is about 2.8 billion light-years from Earth. Previously, radio observations from the LOw Frequency ARray (LOFAR), an antenna network in the Netherlands, spotted parentheses-shaped structures on the outside of the system. In this new composite image, X-rays from Chandra (purple) and ESA’s XMM-Newton (blue) have been combined with LOFAR data (red) and an optical image from Pan-STARRs of the stars in the field of view.
      These structures are probably shock fronts — similar to those created by jets that have broken the sound barrier — likely caused by disruption of gas from the initial collision about a billion years ago. Since the collision they have continued traveling outwards and are currently separated by about 11 million light-years, the largest separation of these kinds of structures that astronomers have ever seen.
      Colliding galaxy clusters PSZ2 G181.06+48.47 (Labeled).X-ray: NASA/CXC/CfA/Stroe, A. et al.; Optical: PanSTARRS; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk Now, data from NASA’s Chandra and ESA’s XMM-Newton is providing evidence that PSZ2 G181 is poised for another collision. Having a first pass at ramming each other, the two clusters have slowed down and begun heading back toward a second crash.
      Astronomers made a detailed study of the X-ray observations of this collision site and found three shock fronts. These are aligned with the axis of the collision, and the researchers think they are early signs of the second, oncoming crash.
      The researchers are still trying to determine how much mass each of the colliding clusters contains. Regardless, the total mass of the system is less than others where galaxy clusters have collided. This makes PSZ2 G181 an unusual case of a lower-mass system involved in the rare event of colliding galaxy clusters.
      A paper describing these results appears in a recent issue of The Astrophysical Journal (ApJ) and is led by Andra Stroe from the Center for Astrophysics | Harvard & Smithsonian (CfA) and collaborators. It is part of a series of three papers in ApJ. The second paper is led by Kamlesh Rajpurohit, also of CfA, and the third paper is led by Eunmo Ahn, from Yonsei University in the Republic of Korea.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      In this release, a composite image illustrates a dramatic cosmic story unfolding 2.8 billion light years from Earth. Presented both with and without labels, the image details the fallout when two galaxy clusters collide.
      At the center of the image are the colliding galaxy clusters, which together are known as PSZ2 G181. This combined cluster somewhat resembles an irregular violet peanut shell, with bulbous ends linked by a tapered middle. Inside each bulbous end are several glowing dots; some of the galaxies within the clusters. The violet peanut shape is tilted at a slight angle, surrounded by a blue haze of X-ray gas.
      Far from the bulbous ends, at our upper left and lower right, are two blotchy, thick red lines. These are probably shock fronts, similar to those created by jets that have broken the sound barrier. Bracketing the combined galaxy cluster, these shock fronts were caused by the initial collision about a billion years ago. They are currently separated by 11 million light-years.
      New data from the Chandra and XMM-Newton observatories suggests that PSZ2 G181 is poised for another powerful cosmic event. Having already taken one swipe at each other, the two clusters within are once again on a collision course.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Jun 04, 2025 Related Terms
      Chandra X-Ray Observatory Galaxies Galaxy clusters Marshall Astrophysics Marshall Space Flight Center The Universe
      Explore More
      4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
      Article 1 hour ago 5 min read NASA’s Webb Rounds Out Picture of Sombrero Galaxy’s Disk
      After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024,…
      Article 1 day ago 2 min read Hubble Filters a Barred Spiral
      This NASA/ESA Hubble Space Telescope image features a luminous tangle of stars and dust called…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Universe
      IXPE
      Stars
      Astronomers estimate that the universe could contain up to one septillion stars – that’s a one followed by 24 zeros.…
      Solar System
      View the full article
    • By NASA
      X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.
      As described in our press release, a team of astronomers combined data from NASA’s Chandra X-ray Observatory and the SKA [Square Kilometer Array] Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the antics of the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients.
      Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      In this composite image, X-rays from Chandra (blue) have been combined with infrared data from NASA’s Spitzer Space Telescope (cyan, light blue, teal and orange), and radio from LOFAR (red). An inset shows a more detailed view of the immediate area around this unusual object in X-ray and radio light.
      A wide field image of ASKAP J1832 in X-ray, radio, and infrared light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Using Chandra and the SKA Pathfinder, a team of astronomers found that ASKAP J1832 also dropped off in X-rays and radio waves dramatically over the course of six months. This combination of the 44-minute cycle in X-rays and radio waves in addition to the months-long changes is unlike anything astronomers have seen in the Milky Way galaxy.
      A close-up image of ASKAP J1832 in X-ray and radio light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk The research team argues that ASKAP J1832 is unlikely to be a pulsar or a neutron star pulling material from a companion star because its properties do not match the typical intensities of radio and X-ray signals of those objects. Some of ASKAP J1832’s properties could be explained by a neutron star with an extremely strong magnetic field, called a magnetar, with an age of more than half a million years. However, other features of ASKAP J1832 — such as its bright and variable radio emission — are difficult to explain for such a relatively old magnetar.
      On the sky, ASKAP J1832 appears to lie within a supernova remnant, the remains of an exploded star, which often contain a neutron star formed by the supernova. However, the research team determined that the proximity is probably a coincidence and two are not associated with each other, encouraging them to consider the possibility that ASKAP J1832 does not contain a neutron star. They concluded that an isolated white dwarf does not explain the data but that a white dwarf star with a companion star might. However, it would require the strongest magnetic field ever known for a white dwarf in our galaxy.
      A paper by Ziteng Wang (Curtin University in Australia) and collaborators describing these results appears in the journal Nature. Another team led by Di Li from Tsinghua University in China independently discovered this source using the DAocheng Radio Telescope and submitted their paper to the arXiv on the same day as the team led by Dr Wang. They did not report the X-ray behavior described here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features two composite images of a mysterious object, possibly an unusual neutron star or white dwarf, residing near the edge of a supernova remnant. The object, known as ASKAP J1832, has been intriguing astronomers from the Chandra X-ray Observatory and Square Kilometre Array Pathfinder radio telescope with its antics and bizarre behavior.
      Astronomers have discovered that ASKAP J1832 cycles in radio wave intensity every 44 minutes. This is thousands of times longer than pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. Using Chandra, the team discovered that the object is also regularly varying in X-rays every 44 minutes. This is the first time such an X-ray signal has been found in a long period radio transient like ASKAP J1832.
      In the primary composite image of this release, the curious object is shown in the context of the supernova remnant and nearby gas clouds. Radio data is red and and X-ray sources seen with Chandra are in dark blue. The supernova remnant is the large, wispy, red oval ring occupying the lower right of the image. The curious object sits inside this ring, to our right of center; a tiny purple speck in a sea of colorful specks. The gas cloud shows infrared data from NASA’s Spitzer Space Telescope and resembles a mottled green, teal blue, and golden orange cloud occupying our upper left half of the square image.
      The second, close-up image shows a view of the immediate area around ASKAP J1832. In this composite image, infrared data from Spitzer has been removed, eliminating the mottled cloud and most of the colorful background specks. Here, near the inside edge of the hazy red ring, the curious object resembles a bright white dot with a hot pink outer edge, set against the blackness of space. Upon close inspection, the hot pink outer edge is revealed to have three faint spikes emanating from the surface.
      The primary and close-up images are presented both unadorned, and with labels, including fine white circles identifying ASKAP J1832.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated May 28, 2025 EditorLee Mohon Related Terms
      Chandra X-Ray Observatory Marshall Astrophysics Marshall Space Flight Center Neutron Stars Pulsars Stars The Universe
      Explore More
      2 min read Hubble Spies a Spiral So Inclined
      The stately and inclined spiral galaxy NGC 3511 is the subject of this NASA/ESA Hubble…
      Article 5 days ago 2 min read How Big is Space? We Asked a NASA Expert: Episode: 61
      Article 7 days ago 3 min read Discovery Alert: A Possible Perpendicular Planet
      The Discovery A newly discovered planetary system, informally known as 2M1510, is among the strangest…
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Universe
      IXPE
      Stars
      Astronomers estimate that the universe could contain up to one septillion stars – that’s a one followed by 24 zeros.…
      Solar System
      View the full article
    • By NASA
      NASA, ESA, CSA, Ralf Crawford (STScI) This artist’s concept illustration, released on May 14, 2025, shows a Sun-like star encircled by a disk of dusty debris containing crystalline water ice. Astronomers long expected that frozen water was scattered in systems around stars. By using detailed data known as spectra from NASA’s James Webb Space Telescope, researchers confirmed the presence of crystalline water ice — definitive evidence of what astronomers expected. Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets.
      Read more about what this discovery means.
      Image credit: NASA, ESA, CSA, Ralf Crawford (STScI)
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      JunoCam, the visible light imager aboard NASA’s Juno, captured this enhanced-color view of Ju-piter’s northern high latitudes from an altitude of about 36,000 miles (58,000 kilometers) above the giant planet’s cloud tops during the spacecraft’s 69th flyby on Jan. 28, 2025. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing: Jackie Branc (CC BY) New data from the agency’s Jovian orbiter sheds light on the fierce winds and cyclones of the gas giant’s northern reaches and volcanic action on its fiery moon.
      NASA’s Juno mission has gathered new findings after peering below Jupiter’s cloud-covered atmosphere and the surface of its fiery moon, Io. Not only has the data helped develop a new model to better understand the fast-moving jet stream that encircles Jupiter’s cyclone-festooned north pole, it’s also revealed for the first time the subsurface temperature profile of Io, providing insights into the moon’s inner structure and volcanic activity.
      Team members presented the findings during a news briefing in Vienna on Tuesday, April 29, at the European Geosciences Union General Assembly.
      “Everything about Jupiter is extreme. The planet is home to gigantic polar cyclones bigger than Australia, fierce jet streams, the most volcanic body in our solar system, the most powerful aurora, and the harshest radiation belts,” said Scott Bolton, principal investigator of Juno at the Southwest Research Institute in San Antonio. “As Juno’s orbit takes us to new regions of Jupiter’s complex system, we’re getting a closer look at the immensity of energy this gas giant wields.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Made with data from the JIRAM instrument aboard NASA’s Juno, this animation shows the south polar region of Jupiter’s moon Io during a Dec. 27, 2024, flyby. The bright spots are locations with higher temperatures caused by volcanic activity; the gray areas resulted when Io left the field of view.NASA/JPL/SwRI/ASI – JIRAM Team (A.M.) Lunar Radiator
      While Juno’s microwave radiometer (MWR) was designed to peer beneath Jupiter’s cloud tops, the team has also trained the instrument on Io, combining its data with Jovian Infrared Auroral Mapper (JIRAM) data for deeper insights.
      “The Juno science team loves to combine very different datasets from very different instruments and see what we can learn,” said Shannon Brown, a Juno scientist at NASA’s Jet Propulsion Laboratory in Southern California. “When we incorporated the MWR data with JIRAM’s infrared imagery, we were surprised by what we saw: evidence of still-warm magma that hasn’t yet solidified below Io’s cooled crust. At every latitude and longitude, there were cooling lava flows.”
      The data suggests that about 10% of the moon’s surface has these remnants of slowly cooling lava just below the surface. The result may help provide insight into how the moon renews its surface so quickly as well as how as well as how heat moves from its deep interior to the surface.
      “Io’s volcanos, lava fields, and subterranean lava flows act like a car radiator,” said Brown, “efficiently moving heat from the interior to the surface, cooling itself down in the vacuum of space.”
      Looking at JIRAM data alone, the team also determined that the most energetic eruption in Io’s history (first identified by the infrared imager during Juno’s Dec. 27, 2024, Io flyby) was still spewing lava and ash as recently as March 2. Juno mission scientists believe it remains active today and expect more observations on May 6, when the solar-powered spacecraft flies by the fiery moon at a distance of about 55,300 miles (89,000 kilometers).
      This composite image, derived from data collected in 2017 by the JIRAM instrument aboard NASA’s Juno, shows the central cyclone at Jupiter’s north pole and the eight cy-clones that encircle it. Data from the mission indicates these storms are enduring fea-tures.NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM Colder Climes
      On its 53rd orbit (Feb 18, 2023), Juno began radio occultation experiments to explore the gas giant’s atmospheric temperature structure. With this technique, a radio signal is transmitted from Earth to Juno and back, passing through Jupiter’s atmosphere on both legs of the journey. As the planet’s atmospheric layers bend the radio waves, scientists can precisely measure the effects of this refraction to derive detailed information about the temperature and density of the atmosphere.
      So far, Juno has completed 26 radio occultation soundings. Among the most compelling discoveries: the first-ever temperature measurement of Jupiter’s north polar stratospheric cap reveals the region is about 11 degrees Celsius cooler than its surroundings and is encircled by winds exceeding 100 mph (161 kph).
      Polar Cyclones
      The team’s recent findings also focus on the cyclones that haunt Jupiter’s north. Years of data from the JunoCam visible light imager and JIRAM have allowed Juno scientists to observe the long-term movement of Jupiter’s massive northern polar cyclone and the eight cyclones that encircle it. Unlike hurricanes on Earth, which typically occur in isolation and at lower latitudes, Jupiter’s are confined to the polar region.
      By tracking the cyclones’ movements across multiple orbits, the scientists observed that each storm gradually drifts toward the pole due to a process called “beta drift” (the interaction between the Coriolis force and the cyclone’s circular wind pattern). This is similar to how hurricanes on our planet migrate, but Earthly cyclones break up before reaching the pole due to the lack of warm, moist air needed to fuel them, as well as the weakening of the Coriolis force near the poles. What’s more, Jupiter’s cyclones cluster together while approaching the pole, and their motion slows as they begin interacting with neighboring cyclones.
      “These competing forces result in the cyclones ‘bouncing’ off one another in a manner reminiscent of springs in a mechanical system,” said Yohai Kaspi, a Juno co-investigator from the Weizmann Institute of Science in Israel. “This interaction not only stabilizes the entire configuration, but also causes the cyclones to oscillate around their central positions, as they slowly drift westward, clockwise, around the pole.”
      The new atmospheric model helps explain the motion of cyclones not only on Jupiter, but potentially on other planets, including Earth.
      “One of the great things about Juno is its orbit is ever-changing, which means we get a new vantage point each time as we perform a science flyby,” said Bolton. “In the extended mission, that means we’re continuing to go where no spacecraft has gone before, including spending more time in the strongest planetary radiation belts in the solar system. It’s a little scary, but we’ve built Juno like a tank and are learning more about this intense environment each time we go through it.”
      More About Juno
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
      More information about Juno is at: https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2025-062
      Share
      Details
      Last Updated Apr 29, 2025 Related Terms
      Juno Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 5 days ago 6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 days ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      The Atomic Clock Ensemble in Space (ACES), ESA’s state-of-the-art timekeeping facility, has been successfully installed on the International Space Station, marking the start of a new chapter in space-based precision science. 
      View the full article
  • Check out these Videos

×
×
  • Create New...