Jump to content

The Marshall Star for November 8, 2023


Recommended Posts

  • Publishers
Posted
16 Min Read

The Marshall Star for November 8, 2023

NASA Marshall Space Flight Center's Veterans Day graphic for 2023.

Still Serving: Honoring Marshall, Michoud Veterans

NASA Marshall Space Flight Center's Veterans Day graphic for 2023.

Many members of the workforce at NASA’s Marshall Space Flight Center and Michoud Assembly Facility served in the U.S. Armed Forces before beginning their NASA careers, and some are still serving in both capacities today.

Their defense careers have been in a range of services, including the Army, Air Force, Marine Corps, National Guard, and Reserves. Today, they continue to serve the nation through their work at NASA. As we approach Veterans Day, we pause to acknowledge their military service and hear their stories.

Get to know some of our Marshall and Michoud veterans.

› Back to Top

Marshall’s First Woman Director of Engineering Directorate Celebrates Retirement

By Celine Smith

Mary Beth Koelbl, the first woman to serve as director of the Engineering Directorate at NASA’s Marshall Space Flight Center, celebrated her retirement among Marshall team members and family Nov. 2. Koelbl retires after serving 37 years at Marshall.

Marshall Associate Director, Technical, Larry Leopard gave a speech in honor of Koelbl’s impactful career. Both Leopard and Holder stressed how Koelbl’s personable character and great collaborative efforts made her career and teams successful.

NASA’s Marshall Space Flight Center Associate Director, Technical, Larry Leopard, right, presents Mary Beth Koelbl with bookends for her retirement. Encapsulated in them are flags that were flown in space
NASA’s Marshall Space Flight Center Associate Director, Technical, Larry Leopard, right, presents Mary Beth Koelbl with bookends for her retirement. Encapsulated in them are flags that were flown in space.
NASA/Celine Smith

“Mary Beth has provided outstanding public service to not only engineering but to the center,” Leopard said. “She has been a standard for everybody to follow.”

Appointed to the position in July 2019, Koelbl helped oversee Marshall’s largest organization, comprised of more than 2,000 civil servants and contractors responsible for the design, testing, evaluation and operation of flight hardware and software associated with space transportation and spacecraft systems, science instruments and payloads now in development at Marshall. The directorate provides critical support to NASA’s SLS (Space Launch System) Program, which is managing the construction and testing of the world’s most powerful rocket.

Don Holder was named new director of engineering after previously serving in the role of deputy director under Koelbl.

“Mary Beth Koelbl’s positive attitude toward people and caring about their development has benefited the organization tremendously,” Holder said.

Prior to this appointment, Koelbl was director of the Propulsion Systems Department from 2015 to 2019. In that position, she also served as NASA’s senior executive overseeing the agency’s chemical propulsion capability, leading work across multiple field centers to effectively develop, mature, and apply chemical propulsion capabilities in support of NASA’s missions.

Throughout her NASA career, Koelbl has supported large, complex propulsion systems development and operations efforts for SLS, NASA’s Commercial Crew Program, and various planetary lander development activities. She also contributed to historic efforts such as the space shuttle main engine technology test bed, the Fastrac 60K engine, all shuttle propulsion elements, the Altair spacecraft, and the Ares launch vehicle upper stage and upper stage engine.

NASA’s Marshall Space Flight Center Associate Director, Technical, Larry Leopard, right, presents Mary Beth Koelbl with bookends for her retirement. Encapsulated in them are flags that were flown in space.
Koelbl extends a thanks to her team members and fondly speaks about her career during her retirement celebration held Nov. 2 in the Building 4203 cafeteria.
NASA/Celine Smith

Koelbl joined Marshall in 1986 as an aerospace engineer in the Turbomachinery and Combustion Devices Branch. She was named deputy group lead of the Engineering Directorate’s Engine Systems Engineering Group in 2000 and group leader in 2003. In 2005, following a center wide reorganization, Koelbl was named branch chief of the Engine and Main Propulsion Systems Branch. She was promoted to division chief of the Propulsion Systems Division in 2011, and later that year was named to the Senior Executive Service position of deputy director of the Propulsion Systems Department. The Senior Executive Service is the personnel system covering most of the top managerial positions in federal agencies.

“I have no plans of working after retirement because nothing could be better than this,” Koelbl said in her closing remarks at the reception.

A native of Iowa City, Iowa, Koelbl earned a bachelor’s degree in mechanical engineering in 1985 from the University of Iowa. She has been the recipient of many prestigious awards, including a NASA Exceptional Service Medal in 2018, NASA Leadership Medal in 2007, Space Flight Awareness Award in 2005, and Silver Snoopy in 1996.​​​​​​​

Koelbl and her husband, Terry, who is also a NASA engineer at Marshall, reside in Madison with their three sons. She plans on enjoying her retirement by spending time with her children and grandchildren.

“I’m surely going to miss the people at Marshall – they’re the best,” Koelbl said.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Don Holder Named Director of Marshall’s Engineering Directorate

Don Holder has been named director of the Engineering Directorate at NASA’s Marshall Space Flight Center.

In his new role, Holder will be responsible for the center’s largest organization, comprised of more than 2,000 civil service and contractor personnel, leading the design, testing, evaluation, and operation of flight hardware and software associated with space transportation, spacecraft systems, science instruments, and payloads under development at the center.

Don Holder, director of the Engineering Directorate at NASA’s Marshall Space Flight Center.
Don Holder, director of the Engineering Directorate at NASA’s Marshall Space Flight Center.
NASA

He previously served as the Engineering Directorate’s deputy director.

Holder joined Marshall in 1986 as a quality engineer supporting the Shuttle Propulsion Office. Since then, he has served in a multitude of technical leadership roles and has distinguished himself as a subject matter expert in ECLSS (Environmental Control and Life Support Systems). From 1989 to 1999, he served as a water recovery systems engineer supporting the development of water recovery technologies for the International Space Station.

Holder supported the ECLSS Project in positions of increasing scope and responsibility, including ECLSS Design team lead, technical assistant, and assistant chief engineer from 2000 to 2008. 

In 2008, Holder was assigned as a project chief engineer for the space station, providing leadership for Marshall-provided flight hardware. From 2011 to 2013, he served as chief of the Mechanical Fabrication Branch in the Space Systems Department where he led a workforce of engineers and technicians and managed the numerous facilities required to support Marshall’s manufacturing needs.

Holder served as deputy chief engineer of the FPPO (Flight Programs and Partnerships Office) from 2013 to 2014 until being appointed to the Senior Level position of FPPO chief engineer in mid-2014 and subsequently Human Exploration Development and Operations chief engineer in 2017. He served as deputy director of the Space Systems Department from May 2019 to February 2021.

› Back to Top

Lisa Bates Named Deputy Director of Marshall’s Engineering Directorate

Lisa Bates has been named deputy director of the Engineering Directorate at NASA’s Marshall Space Flight Center.

In her new role, Bates will be jointly responsible for the center’s largest organization, comprised of more than 2,000 civil service and contractor personnel, who design, test, evaluate, and operate flight hardware and software associated with Marshall-developed space transportation and spacecraft systems, science instruments, and payloads.

Lisa Bates
Portrait: Lisa Bates
NASA

She was previously director of Marshall’s Test Laboratory. Appointed to the position in 2021, Bates provided executive leadership for all aspects of the Laboratory, including workforce, budget, infrastructure, and operations for testing.

She joined Marshall in 2008 as the Ares I Upper Stage Thrust Vector Control lead in the Propulsion Department. Since then, she has served in positions of increasing responsibility and authority. From 2009 to 2017, she served as the first chief of the new TVC Branch, which was responsible for defining operational requirements, performing analysis, and evaluating Launch Vehicle TVC systems and TVC components.

As the Space Launch System (SLS) Program Executive from 2017 to 2018, Bates supported the NASA Deputy Associate Administrator for Exploration Systems Development as the liaison and advocate of the SLS. Upon returning to MSFC in 2018, she was selected as deputy manager of the SLS Booster Element Office. Bates also served as deputy manager of the SLS Stages Office from 2018 to 2021 where she shared the responsibilities, accountability, and authorities for all activities associated with the requirements definition, design, development, manufacturing, assembly, green run test, and delivery of the SLS Program’s Stages Element.

Prior to her NASA career, Bates worked 18 years in private industry for numerous aerospace and defense contractors, including Jacobs Engineering, Marotta Scientific Controls, United Technologies (USBI), United Defense, and Sverdrup Technologies.

She holds a bachelor’s degree in mechanical engineering from the University of Alabama in Huntsville. She was awarded a NASA Outstanding Leadership Medal in 2013 and 2022 and has received numerous group and individual achievement awards. Bates and her husband, Don, reside in Madison and have four children.

› Back to Top

Michoud Celebrates Family Day 2023 with Treats and No Tricks

By Matt Higgins

For the second consecutive year, NASA’s Michoud Assembly Facility hosted Family Day, a day when team members can invite their families to visit “America’s Rocket Factory.”

This year’s Family Day was Oct. 28.

Thousands attend Michoud Family 2023 on Oct. 28 to observe Artemis production, interact with Michoud tenants, and enjoy Halloween festivities.
Thousands attend Michoud Family 2023 on Oct. 28 to observe Artemis production, interact with Michoud tenants, and enjoy Halloween festivities.
NASA/Michael DeMocker

“Family Day 2023 was a huge success,” said Michoud Director Lonnie Dutreix. “I enjoyed seeing the employees bring their families and seeing the looks of awe and smiling faces all around.”

Family Day occurred the weekend before Halloween. Team members and their families had the opportunity to view the latest stages of production in the 43-acre factory, including the fully assembled core stage for NASA’s SLS (Space Launch System) rocket for NASA’s Artemis II mission, and were treated to trunk-or-treat as they exited the factory. Michoud passed out candy and Moon Pies to trick-or-treaters of all ages. 

“Family Day 2023 was an opportunity to build on last year’s success,” said Heather Keller, Michoud communications strategist and Family Day coordinator. “We even took advantage of the holiday weekend to include a trunk-or-treat for the kids.”

NASA astronaut Stan Love, left, and astronaut candidate Jack Hathaway pose for pictures with a young attendee at Michoud Family Day.
NASA astronaut Stan Love, left, and astronaut candidate Jack Hathaway pose for pictures with a young attendee at Michoud Family Day.
NASA/Michael DeMocker

Mother Nature spared the heavy rains that occurred during Family Day 2022. The lack of rain and threatening skies allowed for more displays and attractions. There were food trucks outside the factory gates, and a Coast Guard Sikorsky MH-60 Jayhawk helicopter landed on the facility grounds. Attendees viewed the distinct orange and white helicopter up close, sat inside, and took pictures. NASA astronaut Stan Love and astronaut candidate Jack Hathaway took pictures with families in front of the SLS core stage for Artemis II in the Final Assembly area. 

Michoud’s tenants, including its prime contractors Boeing and Lockheed Martin, set up booths and provided swag for those who passed by. Some tenants included interactive virtual reality displays and science experiments. 

“With the addition of astronauts, a USCG rescue helicopter, food trucks, and emergency and heavy equipment static displays, there really was something for everyone,” Keller said.

Attendees observe a liquid nitrogen demonstration at the Boeing table at Michoud Family Day.
Attendees observe a liquid nitrogen demonstration at the Boeing table at Michoud Family Day.
NASA/Michael DeMocker

Prior to 2022’s celebration, Michoud Family Day hadn’t occurred since before the COVID-19 pandemic, and strong thunderstorms kept many people away in 2022. It meant that this year’s event was the first time many family members had seen Michoud in years and the first for many others. Organizers estimated more than 5,000 attended the event.

For Dutreix, it marked one of the final major events of his tenure. He will retire in December.

“It’s my last Family Day as director,” he said. “I’m going to miss it, but I’m proud of the family atmosphere we have at Michoud. The workforce looks out for each other, and we’re committed to seeing Artemis succeed.” 

Higgins, a Manufacturing Technical Solutions Inc. employee, works in communications at Michoud Assembly Facility.

› Back to Top

Watch Crews Add RS-25 Engines to NASA Artemis II SLS Rocket

Artemis II reached a significant milestone as teams fully installed all four RS-25 engines to the 212-foot-tall core stage for NASA’s SLS (Space Launch System) rocket at NASA’s Michoud Assembly Facility.

During Artemis II, the four engines, arranged like legs on a chair at the bottom of the mega rocket, will fire for eight minutes at launch, producing more than 2 million pounds of thrust to send the Artemis II crew around the Moon.

Boeing is the lead contractor for the SLS core stage. Aerojet Rocketdyne, an L3Harris Technologies company, is the lead contractor for the SLS engines. NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.

For more information about SLS, visit https://www.nasa.gov/sls.

› Back to Top

NASA Telescopes Discover Record-breaking Black Hole

Astronomers have discovered the most distant black hole yet seen in X-rays, using NASA telescopes. The black hole is at an early stage of growth that had never been witnessed before, where its mass is similar to that of its host galaxy.

This result may explain how some of the first supermassive black holes in the universe formed.

By combining data from NASA’s Chandra X-ray Observatory and NASA’s James Webb Space Telescope, a team of researchers was able to find the telltale signature of a growing black hole just 470 million years after the big bang.

Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra and Webb space telescopes. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. This image shows the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra and infrared data from Webb, as well as close-ups of the black hole host galaxy UHZ1.
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra and Webb space telescopes. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. These images show the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra and infrared data from Webb, as well as close-ups of the black hole host galaxy UHZ1.
NASA/CXC/SAO/Ákos Bogdán; Infrared: NASA/ESA/CSA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare & K. Arcand

“We needed Webb to find this remarkably distant galaxy and Chandra to find its supermassive black hole,” said Akos Bogdan of the Center for Astrophysics | Harvard & Smithsonian (CfA) who leads a new paper in the journal Nature Astronomy describing these results. “We also took advantage of a cosmic magnifying glass that boosted the amount of light we detected.” This magnifying effect is known as gravitational lensing.

Bogdan and his team found the black hole in a galaxy named UHZ1 in the direction of the galaxy cluster Abell 2744, located 3.5 billion light-years from Earth. Webb data, however, has revealed the galaxy is much more distant than the cluster, at 13.2 billion light-years from Earth, when the universe was only 3% of its current age.

Then over two weeks of observations with Chandra showed the presence of intense, superheated, X-ray emitting gas in this galaxy – a trademark for a growing supermassive black hole. The light from the galaxy and the X-rays from gas around its supermassive black hole are magnified by about a factor of four by intervening matter in Abell 2744 (due to gravitational lensing), enhancing the infrared signal detected by Webb and allowing Chandra to detect the faint X-ray source.

This discovery is important for understanding how some supermassive black holes can reach colossal masses soon after the big bang. Do they form directly from the collapse of massive clouds of gas, creating black holes weighing between about 10,000 and 100,000 Suns? Or do they come from explosions of the first stars that create black holes weighing only between about 10 and 100 Suns?

“There are physical limits on how quickly black holes can grow once they’ve formed, but ones that are born more massive have a head start. It’s like planting a sapling, which takes less time to grow into a full-size tree than if you started with only a seed”, said Andy Goulding of Princeton University. Goulding is a co-author of the Nature Astronomy paper and lead author of a new paper in The Astrophysical Journal Letters that reports the galaxy’s distance and mass using a spectrum from Webb.

Bogdan’s team has found strong evidence that the newly discovered black hole was born massive. Its mass is estimated to fall between 10 and 100 million Suns, based on the brightness and energy of the X-rays. This mass range is similar to that of all the stars in the galaxy where it lives, which is in stark contrast to black holes in the centers of galaxies in the nearby universe that usually contain only about a tenth of a percent of the mass of their host galaxy’s stars.

The large mass of the black hole at a young age, plus the amount of X-rays it produces and the brightness of the galaxy detected by Webb, all agree with theoretical predictions in 2017 by co-author Priyamvada Natarajan of Yale University for an “Outsize Black Hole” that directly formed from the collapse of a huge cloud of gas.

“We think that this is the first detection of an ‘Outsize Black Hole’ and the best evidence yet obtained that some black holes form from massive clouds of gas,” said Natarajan. “For the first time we are seeing a brief stage where a supermassive black hole weighs about as much as the stars in its galaxy, before it falls behind.”

The researchers plan to use this and other results pouring in from Webb and those combining data from other telescopes to fill out a larger picture of the early universe.

NASA’s Hubble Space Telescope previously showed that light from distant galaxies is highly magnified by matter in the intervening galaxy cluster, providing part of the motivation for the Webb and Chandra observations described here.

The paper describing the results by Bogdan’s team appears in Nature Astronomy, and a preprint is available online.

The Webb data used in both papers is part of a survey called the Ultradeep Nirspec and nirCam ObserVations before the Epoch of Reionization (UNCOVER). The paper led by UNCOVER team member Andy Goulding appears in the Astrophysical Journal Letters. The co-authors include other UNCOVER team members, plus Bogdan and Natarajan. A detailed interpretation paper that compares observed properties of UHZ1 with theoretical models for Outsize Black Hole Galaxies is forthcoming.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Read more from NASA’s Chandra X-ray Observatory.

› Back to Top

Lucy Discovery Highlighted on ‘This Week at NASA’

NASA’s Lucy spacecraft got a surprise when it flew by asteroid Dinkinesh on Nov. 1 – the first of multiple asteroids Lucy will visit on its 12-year voyage. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online.

Images captured by Lucy revealed that Dinkinesh is not just a single asteroid, as was thought, but a binary pair. The primary aim of the Lucy mission is to survey the Jupiter Trojan asteroids, a never-before-explored population of small bodies that orbit the Sun in two “swarms” that lead and follow Jupiter in its orbit.

NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center manages the Discovery Program for the Science Mission Directorate at NASA Headquarters.

View this and previous episodes at “This Week @NASA” on NASA’s YouTube page.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Artist’s concept of the star HIP 67522 with a flare erupting toward an orbiting planet, HIP 67522 b. A second planet, HIP 67522 c, is shown in the background. Janine Fohlmeister, Leibniz Institute for Astrophysics Potsdam The Discovery
      A giant planet some 400 light-years away, HIP 67522 b, orbits its parent star so tightly that it appears to cause frequent flares from the star’s surface, heating and inflating the planet’s atmosphere.
      Key Facts
      On planet Earth, “space weather” caused by solar flares might disrupt radio communications, or even damage satellites. But Earth’s atmosphere protects us from truly harmful effects, and we orbit the Sun at a respectable distance, out of reach of the flares themselves.
      Not so for planet HIP 67522 b. A gas giant in a young star system – just 17 million years old – the planet takes only seven days to complete one orbit around its star. A “year,” in other words, lasts barely as long as a week on Earth. That places the planet perilously close to the star. Worse, the star is of a type known to flare – especially in their youth.
      In this case, the proximity of the planet appears to result in fairly frequent flaring.
      Details
      The star and the planet form a powerful but likely a destructive bond. In a manner not yet fully understood, the planet hooks into the star’s magnetic field, triggering flares on the star’s surface; the flares whiplash energy back to the planet. Combined with other high-energy radiation from the star, the flare-induced heating appears to have increased the already steep inflation of the planet’s atmosphere, giving HIP 67522 b a diameter comparable to our own planet Jupiter despite having just 5% of Jupiter’s mass.
      This might well mean that the planet won’t stay in the Jupiter size-range for long. One effect of being continually pummeled with intense radiation could be a loss of atmosphere over time. In another 100 million years, that could shrink the planet to the status of a “hot Neptune,” or, with a more radical loss of atmosphere, even a “sub-Neptune,” a planet type smaller than Neptune that is common in our galaxy but lacking in our solar system.
      Fun Facts
      Four hundred light-years is much too far away to capture images of stellar flares striking orbiting planets. So how did a science team led by Netherlands astronomer Ekaterina Ilin discover this was happening? They used space-borne telescopes, NASA’s TESS (Transiting Exoplanet Survey Satellite) and the European Space Agency’s CHEOPS (CHaracterising ExoPlanets Telescope), to track flares on the star, and also to trace the path of the planet’s orbit.
      Both telescopes use the “transit” method to determine the diameter of a planet and the time it takes to orbit its star. The transit is a kind of mini-eclipse. As the planet crosses the star’s face, it causes a tiny dip in starlight reaching the telescope. But the same observation method also picks up sudden stabs of brightness from the star – the stellar flares. Combining these observations over five years’ time and applying rigorous statistical analysis, the science team revealed that the planet is zapped with six times more flares than it would be without that magnetic connection.   
      The Discoverers
      A team of scientists from the Netherlands, Germany, Sweden, and Switzerland, led by Ekaterina Ilin of the Netherlands Institute for Radio Astronomy, published their paper on the planet-star connection, “Close-in planet induces flares on its host star,” in the journal Nature on July 2, 2025.
      Keep Exploring Discover More Topics From NASA
      Search for Life



      Stars



      Galaxies



      Black Holes


      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP View the full article
    • By Amazing Space
      24/7 Sun Stream : Latest Views of Our Star from NASA SDO
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Marshall Space Flight Center invites the community to help celebrate the center’s 65th anniversary during a free public event noon to 5 p.m. CDT Saturday, July 19, at The Orion Amphitheater in Huntsville, Alabama.
      NASA Marshall, along with its partners and collaborators, will fill the amphitheater with space exhibits, music, food vendors, and hands-on activities for all ages. The summer celebration will mark 65 years of innovation and exploration, not only for Marshall, but for Huntsville and other North Alabama communities.
      “Our success has been enabled by the continuous support we receive from Huntsville and the North Alabama communities, and this is an opportunity to thank community members and share some of our exciting mission activities,” Joseph Pelfrey, director of NASA Marshall, said.
      Some NASA astronauts from Expedition 72 who recently returned from missions aboard the ISS (International Space Station) will participate in the celebratory event.  The Expedition 72 crew dedicated more than 1,000 combined hours to scientific research and technology demonstrations aboard the space station and crew members in attendance will share their experiences in space.
      The official portrait of the International Space Station’s Expedition 72 crew. At the top (from left) are Roscosmos cosmonaut and Flight Engineer Alexey Ovchinin, NASA astronaut and space station Commander Suni Williams, and NASA astronaut and Flight Engineer Butch Wilmore. In the middle row are Roscosmos cosmonaut and Flight Engineer Ivan Vagner and NASA astronaut and Flight Engineer Don Pettit. In the bottom row are Roscosmos cosmonaut and Flight Engineer Aleksandr Gorbunov and NASA astronaut and Flight Engineer Nick Hague. NASA/Bill Stafford and Robert Markowitz “Every day, our Marshall team works to advance human spaceflight and discovery, such as working with our astronauts on the space station.” Pelfrey said. “We are honored Expedition 72 crew members will join us to help commemorate our 65-year celebration.”
      The anniversary event will also include remarks from Pelfrey, other special presentations, and fun for the whole family.
      Learn more about this free community event at:
      https://www.nasa.gov/marshall65
      Lance D. Davis
      Marshall Space Flight Center, Huntsville, Ala. 
      256-640-9065 
      lance.d.davis@nasa.gov
      Share
      Details
      Last Updated Jun 17, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 2 hours ago 4 min read NASA Celebrates Employees Selected for Top Federal Award
      Article 23 hours ago 3 min read NASA Announces Winners of 2025 Student Launch Competition
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk An unusual star (circled in white at right) behaving like no other seen before and its surroundings are featured in this composite image released on May 28, 2025. A team of astronomers combined data from NASA’s Chandra X-ray Observatory and the Square Kilometer Array Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients. Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      Image credit: X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk
      View the full article
    • By NASA
      X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.
      As described in our press release, a team of astronomers combined data from NASA’s Chandra X-ray Observatory and the SKA [Square Kilometer Array] Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the antics of the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients.
      Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      In this composite image, X-rays from Chandra (blue) have been combined with infrared data from NASA’s Spitzer Space Telescope (cyan, light blue, teal and orange), and radio from LOFAR (red). An inset shows a more detailed view of the immediate area around this unusual object in X-ray and radio light.
      A wide field image of ASKAP J1832 in X-ray, radio, and infrared light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Using Chandra and the SKA Pathfinder, a team of astronomers found that ASKAP J1832 also dropped off in X-rays and radio waves dramatically over the course of six months. This combination of the 44-minute cycle in X-rays and radio waves in addition to the months-long changes is unlike anything astronomers have seen in the Milky Way galaxy.
      A close-up image of ASKAP J1832 in X-ray and radio light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk The research team argues that ASKAP J1832 is unlikely to be a pulsar or a neutron star pulling material from a companion star because its properties do not match the typical intensities of radio and X-ray signals of those objects. Some of ASKAP J1832’s properties could be explained by a neutron star with an extremely strong magnetic field, called a magnetar, with an age of more than half a million years. However, other features of ASKAP J1832 — such as its bright and variable radio emission — are difficult to explain for such a relatively old magnetar.
      On the sky, ASKAP J1832 appears to lie within a supernova remnant, the remains of an exploded star, which often contain a neutron star formed by the supernova. However, the research team determined that the proximity is probably a coincidence and two are not associated with each other, encouraging them to consider the possibility that ASKAP J1832 does not contain a neutron star. They concluded that an isolated white dwarf does not explain the data but that a white dwarf star with a companion star might. However, it would require the strongest magnetic field ever known for a white dwarf in our galaxy.
      A paper by Ziteng Wang (Curtin University in Australia) and collaborators describing these results appears in the journal Nature. Another team led by Di Li from Tsinghua University in China independently discovered this source using the DAocheng Radio Telescope and submitted their paper to the arXiv on the same day as the team led by Dr Wang. They did not report the X-ray behavior described here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features two composite images of a mysterious object, possibly an unusual neutron star or white dwarf, residing near the edge of a supernova remnant. The object, known as ASKAP J1832, has been intriguing astronomers from the Chandra X-ray Observatory and Square Kilometre Array Pathfinder radio telescope with its antics and bizarre behavior.
      Astronomers have discovered that ASKAP J1832 cycles in radio wave intensity every 44 minutes. This is thousands of times longer than pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. Using Chandra, the team discovered that the object is also regularly varying in X-rays every 44 minutes. This is the first time such an X-ray signal has been found in a long period radio transient like ASKAP J1832.
      In the primary composite image of this release, the curious object is shown in the context of the supernova remnant and nearby gas clouds. Radio data is red and and X-ray sources seen with Chandra are in dark blue. The supernova remnant is the large, wispy, red oval ring occupying the lower right of the image. The curious object sits inside this ring, to our right of center; a tiny purple speck in a sea of colorful specks. The gas cloud shows infrared data from NASA’s Spitzer Space Telescope and resembles a mottled green, teal blue, and golden orange cloud occupying our upper left half of the square image.
      The second, close-up image shows a view of the immediate area around ASKAP J1832. In this composite image, infrared data from Spitzer has been removed, eliminating the mottled cloud and most of the colorful background specks. Here, near the inside edge of the hazy red ring, the curious object resembles a bright white dot with a hot pink outer edge, set against the blackness of space. Upon close inspection, the hot pink outer edge is revealed to have three faint spikes emanating from the surface.
      The primary and close-up images are presented both unadorned, and with labels, including fine white circles identifying ASKAP J1832.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated May 28, 2025 EditorLee Mohon Related Terms
      Chandra X-Ray Observatory Marshall Astrophysics Marshall Space Flight Center Neutron Stars Pulsars Stars The Universe
      Explore More
      2 min read Hubble Spies a Spiral So Inclined
      The stately and inclined spiral galaxy NGC 3511 is the subject of this NASA/ESA Hubble…
      Article 5 days ago 2 min read How Big is Space? We Asked a NASA Expert: Episode: 61
      Article 7 days ago 3 min read Discovery Alert: A Possible Perpendicular Planet
      The Discovery A newly discovered planetary system, informally known as 2M1510, is among the strangest…
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Universe
      IXPE
      Stars
      Astronomers estimate that the universe could contain up to one septillion stars – that’s a one followed by 24 zeros.…
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...