Jump to content

DART Team Earns Smithsonian Michael Collins Trophy for Successful Planetary Defense Test Mission


Recommended Posts

  • Publishers
Posted

3 min read

DART Team Earns Smithsonian Michael Collins Trophy for Successful Planetary Defense Test Mission

Michael Collins
Eric Long, Smithsonian’s National Air and Space Museum

NASA’s Double Asteroid Redirection Test (DART) will be honored with the 2024 Michael Collins Trophy for Current Achievement. For its work developing and managing the first-ever planetary defense test mission, the team comprised by NASA’s Planetary Defense Coordination Office (PDCO) and the Johns Hopkins Applied Physics Laboratory (APL) is being lauded for outstanding achievements in the fields of aerospace science and technology.

Designed, built and operated by APL for NASA’s PDCO, which oversees the agency’s ongoing efforts in planetary defense, DART was humanity’s first mission to intentionally move a celestial object, impacting the asteroid Dimorphos on Sept. 26, 2022. DART’s collision with Dimorphos changed the asteroid’s orbit period around its companion asteroid, Didymos, by 33 minutes.

“Our planetary defense objective is to find any potential asteroid impact many years to decades before it could happen so that, if ever necessary, the object could be deflected with technology tested by DART,” said Lindley Johnson, planetary defense officer at NASA Headquarters. “The DART team was an international collaboration of planetary defenders who turned the kinetic impact concept of asteroid deflection into reality. Their efforts have taken a giant leap forward for humanity’s ability to address the asteroid impact hazard.”

The Smithsonian’s National Air and Space Museum awards its Michael Collins Trophy yearly for both Current and Lifetime Achievements. The DART mission has earned the former, joining astronaut Peggy Whitson, who will collect the 2024 Lifetime Achievement Award for her distinguished space career.  


Since 1985, the organization has been recognizing extraordinary accomplishments in aeronautics and spaceflight, and it selected DART for its “extraordinary technological advancements and new scientific breakthroughs in space science.”  

Launched in November 2021 from Vandenberg Space Force Base in California atop a SpaceX Falcon 9 rocket, DART embarked on a 10-month journey to Dimorphos. This historic mission showcased the world’s first planetary defense technology demonstration in action as it was live streamed by NASA online when the DART spacecraft intentionally collided with its target asteroid.

Scientists worldwide monitored the aftermath through telescopes and radar facilities to assess the impact on Dimorphos’ orbit around Didymos. Pre-impact projections estimated a range of possible deflections, and the postimpact observations revealed a significant deflection of the target asteroid at the high-end of the pre-impact models, a promising result for applying the technique in the future if needed. 

Images captured by DART’s onboard Didymos Reconnaissance and Asteroid Camera for Optical navigation(DRACO) and the Italian Space Agency’s ride-along Light Italian CubeSat for Imaging of Asteroids(LICIACube), complemented by observations from ground-based telescopes as well as NASA’s James Webb Space Telescope, Hubble Space Telescope and the Lucy spacecraft, provided critical data. These observations allowed scientists to analyze Dimorphos’ surface composition, the material ejection velocity and quantity due to the collision, and the distribution of particle sizes within the ensuing dust cloud. Scientists on the mission confirmed in four subsequent papers published in Nature the effectiveness of the kinetic impactor technique in altering asteroid trajectories, making it a groundbreaking milestone for planetary defense.  Look back at all of DART’s milestones and science successes in the year since impact.  

More information about the Michael Collins Trophy and a complete list of past winners is available.  The DART team will accept the award on March 21, 2024, at the museum’s Steven F. Udvar-Hazy Center in Chantilly, Virginia.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s coverage of the April 8, 2024, total solar eclipse has earned two nominations for the 46th Annual News & Documentary Emmy Awards.
      The Academy of Television Arts & Sciences announced the nominations on May 1, recognizing NASA’s outstanding work in sharing this rare celestial event with audiences around the world. The winners are set to be unveiled at a ceremony in late June.
      “Total solar eclipses demonstrate the special connection between our Earth, Moon, and Sun by impacting our senses during the breathtaking moments of total alignment that only occur at this time on Earth,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “NASA’s Eclipse coverage team perfectly encapsulated the awe-inspiring experience from start to finish for viewers around the world in this once-in-a-lifetime moment in American history. Congratulations to the entire NASA Eclipse coverage team for their two much-deserved Emmy award nominations!”
      The two nominations include:
      Outstanding Live News Special for the agency’s live broadcast coverage of the 2024 total solar eclipse. NASA’s live broadcast coverage of the 2024 total solar eclipse was the most ambitious live project ever attempted by the agency. The broadcast spanned three hours as the eclipse traveled 3,000 miles across seven states and two countries. From cities, parks, and stadiums, 11 hosts and correspondents provided on air commentary, interviews, and live coverage. Viewers tuned in from all over the world, including at watch parties in 9 locations, from the Austin Public Library to New York’s Times Square. An interactive “Eclipse Board” provided real time data analysis as the Moon’s shadow crossed North America. Live feeds from astronauts aboard the International Space Station and NASA’s WB-57 high-altitude research aircraft were brought in to provide rare and unique perspectives of the solar event.
      In total, NASA received almost 40 million views across its own distribution. Externally, the main broadcast was picked up in 2,208 hits on 568 channels in 25 countries.
      Outstanding Show Open or Title Sequence – News for the agency’s show open for the 2024 total solar eclipse. NASA’s show open for the 2024 total solar eclipse live broadcast explores the powerful connections between the Sun, humanity, and the rare moment when day turns to night. From witnessing the Sun’s atmosphere to feeling the dramatic drop in temperature, the video captures the psychological, emotional, and cultural impact of this celestial phenomenon.  
      For more information about NASA missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated May 08, 2025 Related Terms
      General 2024 Solar Eclipse Eclipses Heliophysics Heliophysics Division Science Mission Directorate Solar Eclipses The Solar System Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 3 hours ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 1 day ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
      A blended team of NASA personnel and contractors support ongoing development and operation of the NASA Data Acquisition System at NASA’s Stennis Space Center. Team members include, left to right: Andrew Graves (NASA), Shane Cravens (Syncom Space Services), Peggi Marshall (Syncom Space Services), Nicholas Payton Karno (Syncom Space Services), Alex Elliot (NASA), Kris Mobbs (NASA), Brandon Carver (NASA), Richard Smith (Syncom Space Services), and David Carver (NASA)NASA/Danny Nowlin Members of the NASA Data Acquisition System team at NASA’s Stennis Space Center evaluate system hardware for use in monitoring and collecting propulsion test data at the site.NASA/Danny Nowlin NASA software engineer Alex Elliot, right, and Syncom Space Services software engineer Peggi Marshall fine-tune data acquisition equipment at NASA’s Stennis Space Center by adjusting an oscilloscope to capture precise measurements. NASA/Danny Nowlin Syncom Space Services software test engineer Nicholas Payton Karno monitors a lab console at NASA’s Stennis Space Center displaying video footage of an RS-25 engine gimbal test, alongside data acquisition screens showing lab measurements. NASA/Danny Nowlin Just as a steady heartbeat is critical to staying alive, propulsion test data is vital to ensure engines and systems perform flawlessly.
      The accuracy of the data produced during hot fire tests at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, tells the performance story.
      So, when NASA needed a standardized way to collect hot fire data across test facilities, an onsite team created an adaptable software tool to do it.
      “The NASA Data Acquisition System (NDAS) developed at NASA Stennis is a forward-thinking solution,” said David Carver, acting chief of the Office of Test Data and Information Management. “It has unified NASA’s rocket propulsion testing under an adaptable software suite to meet needs with room for future expansion, both within NASA and potentially beyond.”
      Before NDAS, contractors conducting test projects used various proprietary tools to gather performance data, which made cross-collaboration difficult. NDAS takes a one-size-fits-all approach, providing NASA with its own system to ensure consistency.
      “Test teams in the past had to develop their own software tools, but now, they can focus on propulsion testing while the NDAS team focuses on developing the software that collects data,” said Carver.
      A more efficient workflow has followed since the software system is designed to work with any test hardware. It allows engineers to seamlessly work between test areas, even when upgrades have been made and hardware has changed, to support hot fire requirements for the agency and commercial customers.
      With the backing and resources of the NASA Rocket Propulsion Test (RPT) Program Office, a blended team of NASA personnel and contractors began developing NDAS in 2011 as part of the agency’s move to resume control of test operations at NASA Stennis. Commercial entities had conducted the operations on NASA’s behalf for several decades.
      The NASA Stennis team wrote the NDAS software code with modular components that function independently and can be updated to meet the needs of each test facility. The team used LabVIEW, a graphical platform that allows developers to build software visually rather than using traditional text-based code.
      Syncom Space Services software engineer Richard Smith, front, analyzes test results using the NASA Data Acquisition System Displays interface at NASA’s Stennis Space Center while NASA software engineer Brandon Carver actively tests and develops laboratory equipment. NASA/Danny Nowlin NASA engineers, from left to right, Tristan Mooney, Steven Helmstetter Chase Aubry, and Christoffer Barnett-Woods are shown in the E-1 Test Control Center where the NASA Data Acquisition System is utilized for propulsion test activities. NASA/Danny Nowlin NASA engineers Steven Helmstetter, Christoffer Barnett-Woods, and Tristan Mooney perform checkouts on a large data acquisition system for the E-1 Test Stand at NASA’s Stennis Space Center. The data acquisition hardware, which supports testing for E Test Complex commercial customers, is controlled by NASA Data Acquisition System software that allows engineers to view real-time data while troubleshooting hardware configuration.NASA/Danny Nowlin NASA engineers Steven Helmstetter, left, and Tristan Mooney work with the NASA Data Acquisition System in the E-1 Test Control Center, where the system is utilized for propulsion test activities.NASA/Danny Nowlin “These were very good decisions by the original team looking toward the future,” said Joe Lacher, a previous NASA project manager. “LabVIEW was a new language and is now taught in colleges and widely used in industry. Making the program modular made it adaptable.”
      During propulsion tests, the NDAS system captures both high-speed and low-speed sensor data. The raw sensor data is converted into units for both real-time monitoring and post-test analysis.
      During non-test operations, the system monitors the facility and test article systems to help ensure the general health and safety of the facility and personnel.
      “Having quality software for instrumentation and data recording systems is critical and, in recent years, has become increasingly important,” said Tristan Mooney, NASA instrumentation engineer. “Long ago, the systems used less software, or even none at all. Amplifiers were configured with physical knobs, and data was recorded on tape or paper charts. Today, we use computers to configure, display, and store data for nearly everything.”
      Developers demonstrated the new system on the A-2 Test Stand in 2014 for the J-2X engine test project.
      From there, the team rolled it out on the Fred Haise Test Stand (formerly A-1), where it has been used for RS-25 engine testing since 2015. A year later, teams used NDAS on the Thad Cochran Test Stand (formerly B-2) in 2016 to support SLS (Space Launch System) Green Run testing for future Artemis missions.
      One of the project goals for the system is to provide a common user experience to drive consistency across test complexes and centers.
      Kris Mobbs, current NASA project manager for NDAS, said the system “really shined” during the core stage testing. “We ran 24-hour shifts, so we had people from across the test complex working on Green Run,” Mobbs said. “When the different shifts came to work, there was not a big transition needed. Using the software for troubleshooting, getting access to views, and seeing the measurements were very common activities, so the various teams did not have a lot of build-up time to support that test.”
      Following success at the larger test stands, teams started using NDAS in the E Test Complex in 2017, first at the E-2 Test Stand, then on the E-1 and E-3 stands in 2020.
      Growth of the project was “a little overwhelming,” Lacher recalled. The team maintained the software on active stands supporting tests, while also continuing to develop the software for other areas and their many unique requirements.
      Each request for change had to be tracked, implemented into the code, tested in the lab, then deployed and validated on the test stands.
      “This confluence of requirements tested my knowledge of every stand and its uniqueness,” said Lacher. “I had to understand the need, the effort to meet it, and then had to make decisions as to the priorities the team would work on first.”
      Creation of the data system and its ongoing updates have transformed into opportunities for growth among the NASA Stennis teams working together.
      “From a mechanical test operations perspective, NDAS has been a pretty easy system to learn,” said Derek Zacher, NASA test operations engineer. “The developers are responsive to the team’s ideas for improvement, and our experience has consistently improved with the changes that enable us to view our data in new ways.”
      Originally designed to support the RPT office at NASA Stennis, the software is expanding beyond south Mississippi to other test centers, attracting interest from various NASA programs and projects, and garnering attention from government agencies that require reliable and scalable data acquisition. “It can be adopted nearly anywhere, such as aerospace and defense, research and development institutions and more places, where data acquisition systems are needed,” said Mobbs. “It is an ever-evolving solution.”
      Read More Share
      Details
      Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By NASA
      One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
      This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
      Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
      There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
      This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
      “The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
      Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
      This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      301-286-1940
      Share
      Details
      Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 10 months ago View the full article
    • By NASA
      Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

      At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

      “We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
      Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

      Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

      After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

      NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

      While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

      The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
      NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

      NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
    • By NASA
      Landing on the Moon is not easy, particularly when a crew or spacecraft must meet exacting requirements. For Artemis missions to the lunar surface, those requirements include an ability to land within an area about as wide as a football field in any lighting condition amid tough terrain.

      NASA’s official lunar landing requirement is to be able to land within 50 meters (164 feet) of the targeted site and developing precision tools and technologies is critically important to mission success.

      NASA engineers recently took a major step toward safe and precise landings on the Moon – and eventually Mars and icy worlds – with a successful field test of hazard detection technology at NASA’s Kennedy Space Center Shuttle Landing Facility in Florida.

      A joint team from the Aeroscience and Flight Mechanics Division at NASA’s Johnson Space Center’s in Houston and Goddard Space Flight Center in Greenbelt, Maryland, achieved this huge milestone in tests  of the Goddard Hazard Detection Lidar from a helicopter at Kennedy in March 2025. 

      NASA’s Hazard Detection Lidar field test team at Kennedy Space Center’s Shuttle Landing Facility in Florida in March 2025. NASA The new lidar system is one of several sensors being developed as part of NASA’s Safe & Precise Landing – Integrated Capabilities Evolution (SPLICE) Program, a Johnson-managed cross-agency initiative under the Space Technology Mission Directorate to develop next-generation landing technologies for planetary exploration. SPLICE is an integrated descent and landing system composed of avionics, sensors, and algorithms that support specialized navigation, guidance, and image processing techniques. SPLICE is designed to enable landing in hard-to-reach and unknown areas that are of potentially high scientific interest.

      The lidar system, which can map an area equivalent to two football fields in just two seconds, is a crucial program component. In real time and compensating for lander motion, it processes 15 million short pulses of laser light to quickly scan surfaces and create real-time, 3D maps of landing sites to support precision landing and hazard avoidance. 

      Those maps will be read by the SPLICE Descent and Landing Computer, a high-performance multicore computer processor unit that analyzes all SPLICE sensor data and determines the spacecraft’s velocity, altitude, and terrain hazards. It also computes the hazards and determines a safe landing location. The computer was developed by the Avionics Systems Division at Johnson as a platform to test navigation, guidance, and flight software. It previously flew on Blue Origin’s New Shepard booster rocket.

      The NASA team prepares the Descent and Landing Computer for Hazard Detection Lidar field testing at Kennedy Space Center. NASA For the field test at Kennedy, Johnson led test operations and provided avionics and guidance, navigation, and control support. Engineers updated the computer’s firmware and software to support command and data interfacing with the lidar system. Team members from Johnson’s Flight Mechanics branch also designed a simplified motion compensation algorithm and NASA’s Jet Propulsion Laboratory in Southern California contributed a hazard detection algorithm, both of which were added to the lidar software by Goddard. Support from NASA contractors Draper Laboratories and Jacobs Engineering played key roles in the test’s success.

      Primary flight test objectives were achieved on the first day of testing, allowing the lidar team time to explore different settings and firmware updates to improve system performance. The data confirmed the sensor’s capability in a challenging, vibration-heavy environment, producing usable maps. Preliminary review of the recorded sensor data shows excellent reconstruction of the hazard field terrain.

      A Hazard Detection Lidar scan of a simulated hazard field at Kennedy Space Center (left) and a combined 3D map identifying roughness and slope hazards. NASA Beyond lunar applications, SPLICE technologies are being considered for use on Mars Sample Return, the Europa Lander, Commercial Lunar Payload Services flights, and Gateway. The DLC design is also being evaluated for potential avionics upgrades on Artemis systems.

      Additionally, SPLICE is supporting software tests for the Advancement of Geometric Methods for Active Terrain Relative Navigation (ATRN) Center Innovation Fund project, which is also part of Johnson’s Aeroscience and Flight Mechanics Division. The ATRN is working to develop algorithms and software that can use data from any active sensor – one measuring signals that were reflected, refracted, or scattered by a body’s surface or its atmosphere – to accurately map terrain and provide absolute and relative location information. With this type of system in place, spacecraft will not need external lighting sources to find landing sites.

      With additional suborbital flight tests planned through 2026, the SPLICE team is laying the groundwork for safer, more autonomous landings on the Moon, Mars, and beyond. As NASA prepares for its next era of exploration, SPLICE will be a key part of the agency’s evolving landing, guidance, and navigation capabilities.
      Explore More
      2 min read NASA Gathers Experts to Discuss Emerging Technologies in Astrophysics
      Article 2 hours ago 2 min read NASA Technology Enables Leaps in Artificial Intelligence
      Artificial intelligence lets machines communicate autonomously
      Article 2 hours ago 3 min read In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
      Article 7 hours ago View the full article
  • Check out these Videos

×
×
  • Create New...