Members Can Post Anonymously On This Site
Workshop to Highlight NASA’s Support for Mobility, In-Space Servicing
-
Similar Topics
-
By NASA
The Drag Prediction Workshop series is an extensive international effort to improve transonic aerodynamic predictions. This long-running collaborative effort seeks to mobilize the international aerospace community to improve the computational methods and tools to predict transonic aircraft performance, particularly drag.
More details on the workshop can be found at the workshop website: https://www.aiaa-dpw.org
NASA has a storied history with the workshop series from DPW-I (hosted in 2001) through the upcoming DPW-8, held in concert with Aeroelastic Prediction Workshop 4. In addition to code and methods improvements, the series also resulted in the NASA/Boeing Common Research Model (https://commonresearchmodel.larc.nasa.gov/), an open-access, commercially-relevant aircraft geometry. This geometry has been extensively tested in many facilities throughout the world and been the subject of multiple workshop series.
NASA’s contributions to the upcoming DPW-8 and subsequent work will be highlighted on this page.
Read More Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
Share
Details
Last Updated Sep 12, 2025 Related Terms
General View the full article
-
By NASA
Lydia Rodriguez is an office administrator in the Flight Operations Directorate’s Operations Division and Operations Tools and Procedures Branch at NASA’s Johnson Space Center in Houston.
Over nearly two decades, she has supported nine organizations, helping enable NASA’s missions and forming lasting relationships along the way.
Official portrait of Lydia Rodriguez. NASA/Devin Boldt “I’ve had the opportunity to meet many different people at NASA who have become like family,” Rodriguez said. “I enjoy the culture and building relationships with people from all walks of life. I have learned so much from each person I’ve met and worked alongside.”
Her path to NASA began in high school, when her parents encouraged her to apply for a part-time Office Education student position at Johnson. That early opportunity gave her a glimpse into the agency’s culture — one that would inspire her to stay.
Lydia Rodriguez in the Mission Control Center Viewing Room during the Expedition 72 plaque hanging ceremony at NASA’s Johnson Space Center in Houston. Rodriguez takes pride in the practical support she has provided to her colleagues. She spent years in the Engineering Travel Office, helping team members plan their travel around the world. In 2013, the team was honored with a Group Achievement Award.
“I am proud of being confident and able to help others with their bookings and questions,” Rodriguez said.
Her NASA career has also taught her important lessons. Change has been a constant since she joined the center in 2008, and she has learned to adapt.
One of the greatest challenges came after Hurricane Harvey in 2017, when her home was flooded. Rodriguez learned to ask for support and leaned on employee resources at Johnson.
“I’ve learned that I am a resilient individual who takes on new challenges often,” she said. “What has helped me overcome obstacles is focusing on the mission and showing compassion toward people. We are all here for a reason and a purpose, and together we can accomplish greater things.”
Lydia Rodriguez skydiving for the second time in Houston. To the Artemis Generation, Rodriguez hopes to pass on the excitement of being part of the next frontier of space exploration.
“Take full advantage of the opportunities and resources available,” she said. “Meet new people, ask for help, never stop learning, growing, and contributing your experiences. Hopefully it will inspire others to do the same.”
Explore More
3 min read Inside NASA’s New Orion Mission Evaluation Room for Artemis II
Article 7 days ago 3 min read Lindy Garay: Supporting Space Station Safety and Success
Article 1 week ago 5 min read NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2020, is a mixture of dust that…
Article 2 weeks ago View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA employees Broderic J. Gonzalez, left, and David W. Shank install pieces of a 7-foot wing model in preparation for testing in the 14-by-22-Foot Subsonic Wind Tunnel at NASA’s Langley Research Center in Hampton, Virginia, in May 2025. The lessons learned will be shared with the public to support advanced air mobility aircraft development. NASA/Mark Knopp The advanced air mobility industry is currently working to produce novel aircraft ranging from air taxis to autonomous cargo drones, and all of those designs will require extensive testing – which is why NASA is working to give them a head-start by studying a special kind of model wing. The wing is a scale model of a design used in a type of aircraft called a “tiltwing,” which can swing its wing and rotors from vertical to horizontal. This allows the aircraft to take off, hover, and land like a helicopter, or fly like a fixed-wing airplane. This design enables versatility in a range of operating environments.
Several companies are working on tiltwings, but NASA’s research into the scale wing will also impact nearly all types of advanced air mobility aircraft designs.
“NASA research supporting advanced air mobility demonstrates the agency’s commitment to supporting this rapidly growing industry,” said Brandon Litherland, principal investigator for the test at NASA’s Langley Research Center in Hampton, Virginia. “Tool improvements in these areas will greatly improve our ability to accurately predict the performance of new advanced air mobility aircraft, which supports the adoption of promising designs. Gaining confidence through testing ensures we can identify safe operating conditions for these new aircraft.”
NASA researcher Norman W. Schaeffler adjusts a propellor, which is part of a 7-foot wing model that was recently tested at NASA’s Langley Research Center in Hampton, Virginia. In May and June, NASA researchers tested the wing in the 14-by-22-Foot Subsonic Wind Tunnel to collect data on critical propeller-wing interactions. The lessons learned will be shared with the public to support advanced air mobility aircraft development.NASA/Mark Knopp In May and June, NASA tested a 7-foot wing model with multiple propellers in the 14-by-22-Foot Subsonic Wind Tunnel at Langley. The model is a “semispan,” or the right half of a complete wing. Understanding how multiple propellers and the wing interact under various speeds and conditions provides valuable insight for the advanced air mobility industry. This information supports improved aircraft designs and enhances the analysis tools used to assess the safety of future designs.
This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
“This tiltwing test provides a unique database to validate the next generation of design tools for use by the broader advanced air mobility community,” said Norm Schaeffler, the test director, based at Langley. “Having design tools validated for a broad range of aircraft will accelerate future design cycles and enable informed decisions about aerodynamic and acoustic performance.”
In May and June, NASA researchers tested a 7-foot wing model in the 14-by-22-Foot Subsonic Wind Tunnel at NASA’s Langley Research Center in Hampton, Virginia. The team collected data on critical propeller-wing interactions over the course of several weeks.NASA/Mark Knopp The wing is outfitted with over 700 sensors designed to measure pressure distribution, along with several other types of tools to help researchers collect data from the wing and propeller interactions. The wing is mounted on special sensors to measure the forces applied to the model. Sensors in each motor-propeller hub to measure the forces acting on the components independently.
The model was mounted on a turntable inside the wind tunnel, so the team could collect data at different wing tilt angles, flap positions, and rotation rates. The team also varied the tunnel wind speed and adjusted the relative positions of the propellers.
Researchers collected data relevant to cruise, hover, and transition conditions for advanced air mobility aircraft. Once they analyze this data, the information will be released to industry on NASA’s website.
Share
Details
Last Updated Aug 07, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Drones & You Langley Research Center Revolutionary Vertical Lift Technology Explore More
3 min read Three NASA Langley Employees Win Prestigious Silver Snoopy Awards
Article 3 hours ago 3 min read NASA Drop Test Supports Safer Air Taxi Design and Certification
Article 1 week ago 3 min read NASA Rehearses How to Measure X-59’s Noise Levels
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Science Science Activation NASA Science Activation Teams… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
NASA Science Activation Teams Unite to Support Neurodiverse Learners with Public Libraries
On July 16, 2025, more than 400 public library staff from across the United States joined a powerful webinar, Serving Neurodiverse Library Patrons and Colleagues, hosted by two NASA Science Activation program teams: NASA@ My Library and NASA’s Neurodiversity Network (N3). The event brought together researchers, library professionals, and individuals with lived experience of neurodiversity to share insights and best practices for creating more inclusive and supportive environments in libraries.
Designed to equip library staff with tools and awareness, this interactive webinar explored how libraries can better serve neurodiverse patrons, such as those with autism, attention deficit hyperactivity disorder (ADHD), dyslexia, and other cognitive variations, while also supporting neurodiverse colleagues. Breakout rooms allowed participants to dive deeper into specific topics, including accessible program facilitation, supporting neurodiverse colleagues, and an “Ask Me Anything” space that encouraged open dialogue and learning.
Library staff everywhere are invited to watch the recorded webinar on YouTube and learn more about serving neurodiverse patrons and colleagues.
The collaboration between NASA@ My Library (led by the Space Science Institute), and NASA’s Neurodiversity Network (N3) (led by Sonoma State University), reflects a shared commitment to broadening participation in STEM (Science, Technology, Engineering, and Mathematics). NASA@ My Library works with public libraries nationwide to engage diverse communities in NASA science and discoveries. N3 focuses on empowering neurodiverse learners – particularly those in high school – with opportunities to engage with NASA science and explore potential STEM career pathways.
Participants left inspired, and the demand for more is clear: attendees and speakers alike expressed interest in continuing the conversation, requesting additional training, and expressing interest in organizing a future conference centered on neurodiversity and inclusion in libraries.
Youth Services Librarian and webinar panelist Molly Creveling shared, “This was such a great opportunity, and I’m extremely proud to have been able to contribute to it, I wish I was able to attend everyone’s break out room!” And participant Jason Wood expressed in the chat, “Really, really appreciate this webinar. This is one of those days I am extra proud to be a librarian. Thank you all.” Another enthusiast participant said, “This was the best webinar I’ve attended in years…more of this!”
Watch the recorded webinar.
As NASA continues to reach for the stars, it’s equally committed to ensuring that the journey is accessible to all – especially those whose unique ways of thinking and learning bring fresh perspectives to science, exploration, and discovery.
NASA@ My Library and N3, supported by NASA under cooperative agreement award numbers NNX16AE30A and 80NSSC21M0004, are part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Presenters included staff from NASA’s Neurodiversity Network, NASA@ My Library, Education Development Center, and the Lunar and Planetary Institute. Share
Details
Last Updated Aug 05, 2025 Editor NASA Science Editorial Team Related Terms
Opportunities For Educators to Get Involved Science Activation Explore More
4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
Article
1 day ago
4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play
Article
4 days ago
3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA / DIP Start
November 17, 2021 at 10:00 AM ESTEnd
November 17, 2021 at 12:00 PM EST Workshop Series: What It’s About
The Digital Information Platform (DIP) workshop series is intended to provide a deeper dive and a closer look at some of the core features being developed by the DIP sub-project under ATM-X.
These workshops will give insight into DIP development, technology, and assumptions as well as providing a forum for engaging with the DIP team to pose questions and provide feedback on proposed designs. Engagement with the broader aviation community is a critical component to success of the DIP sub-project!
There will be several workshops within this series spanning a variety of topics. Participants are encouraged to sign up for any workshop topics they feel they could contribute to or provide feedback on.
Please keep an eye on the DIP homepage, under the upcoming events section, for future announcements of additional workshop topics!
Workshop #1: DIP Architecture and Data Integration Services
This workshop will cover DIP architecture and data integration services. Participants will get a look at how the DIP architecture is set-up as well as how data integration services are planned to be hosted on the platform.
The DIP architecture review is intended to cover how DIP was envisioned and how DIP is being developed to address data needs across the industry. Participants will have a chance to provide feedback on the DIP architecture and gain insight into how one might interface with the DIP to send or receive data.
The data integration services portion is intended to cover DIP’s technical approach to data integration. As an example implementation, there will be a first look at possible data fusion on the platform , including utilizing NASA’s Fuser, and tailoring for industry data consumers. Descriptions, at a high-level, of input to and output of the Fuser will also be discussed.
Who Should Register?
Participants interested in partnering with DIP and registering their service with the DIP platform are highly encouraged to attend this workshop. This is a unique opportunity for the aviation community to provide feedback and input on how this platform is structured to meet your needs.
Data and service consumers as well as data and service providers are encouraged to attend this workshop to provide their feedback and input for DIP development.
Participants looking to gain insight into upcoming DIP demonstrations or to learn more about DIP are encouraged to attend this workshop.
Resources
Presentation slides Session Recording Request materials via email (arc-dip-ext@mail.nasa.gov) Digital Information Platform
Digital Information Platform Events
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Explore More
1 min read Digital Information Platform Library
Article 10 minutes ago 1 min read DIP Events
Article 11 minutes ago 1 min read DIP Request for Information (RFI) Information Session
Article 11 minutes ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Solar System Exploration
Eyes on the Solar System
Explore NASA’s History
Share
Details
Last Updated Jun 18, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
Digital Information Platform Air Traffic Management – Exploration View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.