Jump to content

NASA Flights Link Methane Plumes to Tundra Fires in Western Alaska


Recommended Posts

  • Publishers
Posted
1-yukondelta-usfws.webp?w=1200
Tundra wetlands are shown in late spring at the Yukon Delta National Wildlife Refuge in Alaska. Scientists are studying how fire and ice drive methane emissions in the Yukon-Kuskokwim Delta, within which the refuge is located.
U.S. Fish and Wildlife Service

Methane ‘hot spots’ in the Yukon-Kuskokwim Delta are more likely to be found where recent wildfires burned into the tundra, altering carbon emissions from the land.

In Alaska’s largest river delta, tundra that has been scorched by wildfire is emitting more methane than the rest of the landscape long after the flames died, scientists have found. The potent greenhouse gas can originate from decomposing carbon stored in permafrost for thousands of years. Its release could accelerate climate warming and lead to more frequent wildfires in the tundra, where blazes have been historically rare.

The new study was conducted by a team of scientists working as part of NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE), a large-scale study of environmental change in Alaska and Western Canada. Researchers found that methane hot spots were roughly 29% more likely to occur in tundra that had been scorched by wildfire in the past 50 years compared to unburned areas. The correlation nearly tripled in areas where a fire burned to the edge of a lake, stream, or other standing-water body. The highest ratio of hot spots occurred in recently burned wetlands.

The researchers first observed the methane hot spots using NASA’s next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) in 2017. Mounted on the belly of a research plane, the instrument has an optical sensor that records the interaction of sunlight with molecules near the land surface and in the air, and it has been used to measure and monitor hazards ranging from oil spills to crop disease.

e1-methane-bubbles-above.jpg?w=1977
Methane bubbles pop on the surface of an Alaskan lake being studied by scientists with NASA’s Arctic-Boreal Vulnerability Experiment. A potent greenhouse gas, methane is released in bubble seeps when microbes consume carbon released from thawing permafrost.
NASA/Kate Ramsayer

Roughly 2 million hot spots – defined as areas showing an excess of 3,000 parts per million of methane between the aircraft and the ground – were detected across some 11,583 square miles (30,000 square kilometers) of the Arctic landscape. Regionally, the number of hot spot detections in the Yukon-Kuskokwim Delta were anomalously high in 2018 surveys, but scientists didn’t know what was driving their formation.

Ice and Fire

To help fill this gap, Elizabeth Yoseph, an intern at the time with the ABoVE campaign, focused on a methane-active region located in a wet and peaty area of the massive delta. Yoseph and the team used the AVIRIS-NG data to pinpoint hot spots across more than 687 square miles (1,780 square kilometers), then overlaid their findings on historical wildfire maps.

“What we uncovered is a very clear and strong relationship between fire history and the distribution of methane hot spots,” said Yoseph, lead author of the new study.

The connection arises from what happens when fire burns into the carbon-rich frozen soil, or permafrost, that underlies the tundra. Permafrost sequesters carbon from the atmosphere and can store it for tens of thousands of years. But when it thaws and breaks down in wet areas, flourishing microbes feed on and convert that old carbon to methane gas. The saturated soils around lakes and wetlands are especially rich stocks of carbon because they contain large amounts of dead vegetation and animal matter.

Methane emission hot spots were observed from the air using NASA’s AVIRIS-NG instrument across broad regions of the North American Arctic as part of the agency’s Arctic-Boreal Vulnerability Experiment. Credit: NASA’s Scientific Visualization Studio

“When fire burns into permafrost, there are catastrophic changes to the land surface that are different from a fire burning here in California, for example,” said Clayton Elder, co-author and scientist at NASA’s Jet Propulsion Laboratory in Southern California, which developed AVIRIS-NG. “It’s changing something that was frozen to thawed, and that has a cascading impact on that ecosystem long after the fire.”

Rare but Increasing Risk

Because of the cool marshes, low shrubs, and grasses, tundra wildfires are relatively rare compared to those in other environments, such as evergreen-filled forests. However, by some projections the fire risk in the Yukon-Kuskokwim Delta could quadruple by the end of the century due to warming conditions and increased lightning storms – the leading cause of tundra fires. Two of the largest tundra fires on record in Alaska occurred in 2022, burning more than 380 square miles (100,000 hectares) of primarily tundra landscapes.

More research is needed to understand how a future of increasing blazes at high latitudes could impact the global climate. Arctic permafrost holds an estimated 1,700 billion metric tons of carbon – roughly 51 times the amount of carbon the world released as fossil fuel emissions in 2019.

All that stored carbon also means that the carbon intensity of fire emissions from burning tundra is extremely high, said co-author Elizabeth Hoy, a fire researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Tundra fires occur in areas that are remote and difficult to get to, and often can be understudied,” she noted. “Using satellites and airborne remote sensing is a really powerful way to better understand these phenomena.”

The scientists hope to continue exploring methane hot spots occurring throughout Alaska. Ground-based investigation is needed to better understand the links between fire, ice, and greenhouse gas emissions at the doorstep of the Arctic.

The study was published in the journal Environmental Research Letters.

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Written by Sally Younger

2023-159

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame

      A robot for space and the workplace

      Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact. 

      Some of the toughest electronic chips on and off Earth

      Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles. 
      From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.

      Hydrogen sensors that could go the distance on other worlds

      Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
      With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there. 

      Advanced materials research to make travel safer

      Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.  
      Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.

      Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
      Read More Share
      Details
      Last Updated May 09, 2025 Related Terms
      Technology Technology Transfer Technology Transfer & Spinoffs Explore More
      3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
      Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and jets oriented toward Earth, provided scientists with a unique opportunity to answer a longstanding question: How are X-rays generated in extreme environments like this?
      NASA’s IXPE (Imaging X-ray Polarimetry Explorer) collaborated with radio and optical telescopes to find answers. The results (preprint available here), to be published in the journal Astrophysical Journal Letters, show that interactions between fast-moving electrons and particles of light, called photons, must lead to this X-ray emission. 
      This artist’s concept depicts the central region of the blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and a jet oriented toward Earth. The galaxy’s central black hole is surrounded by swirls of orange in various shades representing the accretion disk of material falling toward the black hole. While black holes are known for pulling in material, this accretion process can result in the ejection of jets of electrons at nearly the speed of light. The jet of matter is represented by the cone of light that starts at the center of the black hole and widens out as it reaches the bottom of the image. It is streaked with lines of white, pink and purple which represent helix-shaped magnetic fields. We can observe these jets in many wavelengths of light including radio, optical, and X-ray. NASA’s Imaging X-ray Polarimetry Explorer (IXPE) recently collaborated with radio and optical telescopes to observe this jet and determine how the X-rays are generated in these types of celestial environments.NASA/Pablo Garcia Scientists had two competing possible explanations for the X-rays, one involving protons and one involving electrons. Each of these mechanisms would have a different signature in the polarization of X-ray light. Polarization is a property of light that describes the average direction of the electromagnetic waves that make up light.
      If the X-rays in a black hole’s jets are highly polarized, that would mean that the X-rays are produced by protons gyrating in the magnetic field of the jet or protons interacting with jet’s photons. If the X-rays have a lower polarization degree, it would suggest that electron-photons interactions lead to X-ray production.  
      IXPE, which launched Dec. 9, 2021, is the only satellite flying today that can make such a polarization measurement. 
      “This was one of the biggest mysteries about supermassive black hole jets” said Iván Agudo, lead author of the study and astronomer at the Instituto de Astrofísica de Andalucía – CSIC in Spain. “And IXPE, with the help of a number of supporting ground-based telescopes, finally provided us with the tools to solve it.”
      Astronomers found that electrons must be the culprits through a process called Compton Scattering. Compton scattering (or the Compton effect) happens when a photon loses or gains energy after interacting with a charged particle, usually an electron. Within jets from supermassive black holes, electrons move near the speed of light. IXPE helped scientists learn that, in the case of a blazar jet, the electrons have enough energy to scatter photons of infrared light up to X-ray wavelengths. 
      BL Lacertae (BL Lac for short) is one of the first blazars ever discovered, originally thought to be a variable star in the Lacerta constellation. IXPE observed BL Lac at the end of November 2023 for seven days along with several ground-based telescopes measuring optical and radio polarization at the same time. While IXPE observed BL Lac in the past, this observation was special. Coincidentally, during the X-ray polarization observations, the optical polarization of BL Lac reached a high number: 47.5%. 
      “This was not only the most polarized BL Lac has been in the past 30 years, this is the most polarized any blazar has ever been observed!” said Ioannis Liodakis, one of the primary authors of the study and astrophysicist at the Institute of Astrophysics – FORTH in Greece. 
      IXPE found the X-rays were far less polarized than the optical light. The team was not able to measure a strong polarization signal and determined that the X-rays cannot be more polarized than 7.6%. This proved that electrons interacting with photons, via the Compton effect, must explain the X-rays. 
      The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering.
      Steven Ehlert
      Project Scientist for IXPE at Marshall Space Flight Center
      “The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering”, said Steven Ehlert, project scientist for IXPE and astronomer at the Marshall Space Flight Center. 
      “IXPE has managed to solve another black hole mystery” said Enrico Costa, astrophysicist in Rome at the Istituto di Astrofísica e Planetologia Spaziali of the Istituto Nazionale di Astrofísica. Costa is one of the scientists who conceived this experiment and proposed it to NASA 10 years ago, under the leadership of Martin Weisskopf, IXPE’s first principal investigator. “IXPE’s polarized X-ray vision has solved several long lasting mysteries, and this is one of the most important. In some other cases, IXPE results have challenged consolidated opinions and opened new enigmas, but this is how science works and, for sure, IXPE is doing very good science.”
      What’s next for the blazar research?
      “One thing we’ll want to do is try to find as many of these as possible,” Ehlert said. “Blazars change quite a bit with time and are full of surprises.”
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Elizabeth Landau
      NASA Headquarters
      elizabeth.r.landau@nasa.gov
      202-358-0845
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      lane.e.figueroa@nasa.gov
      256.544.0034 
      Share
      Details
      Last Updated May 06, 2025 EditorBeth RidgewayContactElizabeth R. Landauelizabeth.r.landau@nasa.govLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Explore More
      4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
      Article 5 days ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 weeks ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      Article 3 weeks ago Keep Exploring Discover Related Topics
      IXPE
      About Marshall Science
      Marshall Space Flight Center
      Black Holes
      Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
      View the full article
    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Lifts Veil on Common but Mysterious Type of Exoplanet
      This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Credits:
      Illustration: NASA, ESA, CSA, Dani Player (STScI) Though they don’t orbit around our Sun, sub-Neptunes are the most common type of exoplanet, or planet outside our solar system, that have been observed in our galaxy. These small, gassy planets are shrouded in mystery…and often, a lot of haze. Now, by observing exoplanet TOI-421 b, NASA’s James Webb Space Telescope is helping scientists understand sub-Neptunes in a way that was not possible prior to the telescope’s launch.
      “I had been waiting my entire career for Webb so that we could meaningfully characterize the atmospheres of these smaller planets,” said principal investigator Eliza Kempton of the University of Maryland, College Park. “By studying their atmospheres, we’re getting a better understanding of how sub-Neptunes formed and evolved, and part of that is understanding why they don’t exist in our solar system.”
      Image A: Artist’s Concept of TOI-421 b
      This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Illustration: NASA, ESA, CSA, Dani Player (STScI) Small, Cool, Shrouded in Haze
      The existence of sub-Neptunes was unexpected before they were discovered by NASA’s retired Kepler space telescope in the last decade. Now, astronomers are trying to understand where these planets came from and why are they so common.
      Before Webb, scientists had very little information on them. While sub-Neptunes are a few times larger than Earth, they are still much smaller than gas-giant planets and typically cooler than hot Jupiters, making them much more challenging to observe than their gas-giant counterparts.
      A key finding prior to Webb was that most sub-Neptune atmospheres had flat or featureless transmission spectra. This means that when scientists observed the spectrum of the planet as it passed in front of its host star, instead of seeing spectral features – the chemical fingerprints that would reveal the composition of the atmosphere – they saw only a flat-line spectrum. Astronomers concluded from all of those flat-line spectra that at least certain sub-Neptunes were probably very highly obscured by either clouds or hazes.
      Image B: Spectrum of TOI-421 b
      A transmission spectrum captured by NASA’s James Webb Space Telescope reveals chemicals in the atmosphere of the hot sub-Neptune exoplanet TOI-421 b. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A Different Kind of Sub-Neptune?
      “Why did we observe this planet, TOI-421 b? It’s because we thought that maybe it wouldn’t have hazes,” said Kempton. “And the reason is that there were some previous data that implied that maybe planets over a certain temperature range were less enshrouded by haze or clouds than others.”
      That temperature threshold is about 1,070 degrees Fahrenheit. Below that, scientists hypothesized that a complex set of photochemical reactions would occur between sunlight and methane gas, and that would trigger the haze. But hotter planets shouldn’t have methane and therefore perhaps shouldn’t have haze.
      The temperature of TOI-421 b is about 1,340 degrees Fahrenheit, well above the presumed threshold. Without haze or clouds, researchers expected to see a clear atmosphere – and they did!
      A Surprising Finding
      “We saw spectral features that we attribute to various gases, and that allowed us to determine the composition of the atmosphere,” said the University of Maryland’s Brian Davenport, a third-year Ph.D. student who conducted the primary data analysis. “Whereas with many of the other sub-Neptunes that had been previously observed, we know their atmospheres are made of something, but they’re being blocked by haze.”
      The team found water vapor in the planet’s atmosphere, as well as tentative signatures of carbon monoxide and sulfur dioxide. Then there are molecules they didn’t detect, such as methane and carbon dioxide. From the data, they can also infer that a large amount of hydrogen is in TOI-421 b’s atmosphere.
      The lightweight hydrogen atmosphere was the big surprise to the researchers. “We had recently wrapped our mind around the idea that those first few sub-Neptunes observed by Webb had heavy-molecule atmospheres, so that had become our expectation, and then we found the opposite,” said Kempton. This suggests TOI-421 b may have formed and evolved differently from the cooler sub-Neptunes observed previously.
      Is TOI-421 b Unique?
      The hydrogen-dominated atmosphere is also interesting because it mimics the composition of TOI-421 b’s host star. “If you just took the same gas that made the host star, plopped it on top of a planet’s atmosphere, and put it at the much cooler temperature of this planet, you would get the same combination of gases. That process is more in line with the giant planets in our solar system, and it is different from other sub-Neptunes that have been observed with Webb so far,” said Kempton.
      Aside from being hotter than other sub-Neptunes previously observed with Webb, TOI-421 b orbits a Sun-like star. Most of the other sub-Neptunes that have been observed so far orbit smaller, cooler stars called red dwarfs.
      Is TOI-421b emblematic of hot sub-Neptunes orbiting Sun-like stars, or is it just that exoplanets are very diverse? To find out, the researchers would like to observe more hot sub-Neptunes to determine if this is a unique case or a broader trend. They hope to gain insights into the formation and evolution of these common exoplanets.
      “We’ve unlocked a new way to look at these sub-Neptunes,” said Davenport. “These high-temperature planets are amenable to characterization. So by looking at sub-Neptunes of this temperature, we’re perhaps more likely to accelerate our ability to learn about these planets.”
      The team’s findings appear on May 5 in the Astrophysical Journal Letters.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
      Video: How to Study Exoplanets
      Article: Webb’s Impact on Exoplanet Research
      Video: How do we learn about a planet’s Atmosphere?
      Learn more about exoplanets
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated May 04, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Science & Research The Universe View the full article
  • Check out these Videos

×
×
  • Create New...