Jump to content

25 Years Ago: STS-95, John Glenn Returns to Space


Recommended Posts

  • Publishers
Posted

On Oct. 29, 1998, NASA astronaut John H. Glenn made history again when he returned to space aboard space shuttle Discovery’s STS-95 mission, nearly 37 years after becoming the first American in orbit during his February 1962 Friendship 7 mission. The seven-member STS-95 crew consisted of Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Stephen K. Robinson, Dr. Scott E. Parazynski, and Pedro F. Duque of the European Space Agency, and Payload Specialists Dr. Chiaki Mukai of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, and Glenn, who at age 77 became the oldest person to orbit the Earth, a record that stands to this day. During the nine-day mission, they conducted more than 80 experiments, many of them to study how exposure to weightlessness might relate to the aging process.

The STS-95 crew during their introductory press conference President William J. “Bill” Clinton introduces the STS-95 crew
Left: The STS-95 crew during their introductory press conference. Right: President William J. “Bill” Clinton introduces the STS-95 crew, including Senator John H. Glenn, during a ceremony at NASA’s Johnson Space Center in Houston.

Glenn, whom NASA essentially grounded after his historic 1962 mission for fear of losing a national hero in a spaceflight accident, had always dreamed of returning to space. Upon learning about the physiological changes that occur during spaceflight, and how they somewhat resemble those brought about by aging, now Senator Glenn began lobbying NASA Administrator Daniel S. Goldin for an opportunity to put that theory to the test, by volunteering himself as a subject. Goldin agreed in principle, providing Glenn passed the same physicals as all the other astronauts and that the flight included valuable peer-reviewed research. Glenn did, and teams at NASA working with the National Institutes of Health’s National Institute on Aging to put together a research program of experiments to study bone and muscle loss, balance disorders, sleep disturbances, and changes in the immune system. In addition, the mission conducted other experiments in fields such as materials processing, protein crystal growth, cell biology, and plant growth. Also part of the mission, the SPARTAN 201-5 free-flyer pallet carried instruments to study the Sun’s corona and the solar wind. On Jan. 16, 1998, NASA announced that Glenn would fly as a payload specialist on STS-95. On Feb. 13, the agency announced the rest of the STS-95 crew, who held a press conference at NASA’s Johnson Space Center (JSC) on Feb. 20, coincidentally the 36th anniversary of Glenn’s Friendship 7 flight. During a visit to JSC on April 14, President William J. “Bill” Clinton introduced the STS-95 astronauts.

STS-95 astronauts Steven W. Lindsey, seated left, and Curtis L. Brown; Scott E. Parazynski, standing left, Stephen K. Robinson, Chiaki Mukai of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, Pedro F. Duque of the European Space Agency, and John H. Glenn The STS-95 crew patch Liftoff of space shuttle Discovery on the STS-95 mission, returning Glenn to orbit
Left: STS-95 astronauts Steven W. Lindsey, seated left, and Curtis L. Brown; Scott E. Parazynski, standing left, Stephen K. Robinson, Chiaki Mukai of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, Pedro F. Duque of the European Space Agency, and John H. Glenn. Middle: The STS-95 crew patch. Right: Liftoff of space shuttle Discovery on the STS-95 mission, returning Glenn to orbit.

Space shuttle Discovery’s 25th liftoff took place at 2:19 p.m. EDT on Oct. 29, 1998, from Launch Pad 39B at NASA’s Kennedy Space Center (KSC) in Florida, carrying a double Spacehab module filled with scientific equipment. Brown, making his fifth trip into space and second as commander, and Pilot Lindsey on his second launch, monitored Discovery’s systems as they climbed into orbit, assisted by Mission Specialist Parazynski, a physician making his third trip into space, serving as the flight engineer. Mission Specialist Duque accompanied them on the flight deck. Mission Specialist Robinson, on his second mission, and Payload Specialists Mukai, also a physician and on her second trip to space, and Glenn experienced launch in the shuttle’s middeck.

View of the Spacehab module and the Canadian robotic arm in Discovery’s payload bay The crew’s first view of the interior of the Spacehab module Chiaki Mukai, left, and Stephen K. Robinson begin activating the Spacehab
Left: View of the Spacehab module and the Canadian robotic arm in Discovery’s payload bay. Middle: The crew’s first view of the interior of the Spacehab module. Right: Chiaki Mukai, left, and Stephen K. Robinson begin activating the Spacehab.

Upon reaching orbit, the crew opened the payload bay doors, thus deploying the shuttle’s radiators. Shortly after, the crew opened the hatch from the shuttle’s middeck, translated down the transfer tunnel, and entered Spacehab for the first time, activating the module and turning on the first experiments. These included the life sciences experiments that Glenn conducted to compare the effects of weightlessness and aging.

Physician astronaut Dr. Scott E. Parazynski, left, prepares to draw a blood sample from John H. Glenn Glenn, left, and Parazynski prepare to centrifuge the collected blood sample Glenn, instrumented for a sleep study, prepares to begin his sleep period
Left: Physician astronaut Dr. Scott E. Parazynski, left, prepares to draw a blood sample from John H. Glenn. Middle: Glenn, left, and Parazynski prepare to centrifuge the collected blood sample. Right: Glenn, instrumented for a sleep study, prepares to begin his sleep period.

The STS-95 astronauts use the Canadian-built Remote Manipulator system, or robotic arm, to release the SPARATAN 201-5 free flyer Stephen K. Robinson operates the RMS to retrieve the SPARTAN after its four-day autonomous flight Robinson places the SPARTAN back in the shuttle’s payload bay
Left: The STS-95 astronauts use the Canadian-built Remote Manipulator system, or robotic arm, to release the SPARATAN 201-5 free flyer. Middle: Stephen K. Robinson operates the RMS to retrieve the SPARTAN after its four-day autonomous flight. Right: Robinson places the SPARTAN back in the shuttle’s payload bay.

On the mission’s second day, the crew deployed the PANSAT, a small experimental communications satellite built by the Naval Postgraduate School in Monterey, California. Later in the day, Robinson used the Canadian-built Remote Manipulator System (RMS) or robotic arm to grapple the SPARTAN free flyer. He removed it from its cradle in the payload bay and deployed it for its four-day independent mission. It successfully completed its autonomous flight, traveling up to 30 miles from the shuttle. On flight day 6, Robinson used the RMS to capture SPARTAN and placed it back in its cradle in the payload bay.

Stephen K. Robinson processes a sample in the Advanced Gradient Heating Facility (AGHF) John H. Glenn operates the Osteoporosis Experiment in Orbit (OSTEO) payload investigating the behavior of bone cells in microgravity
Left: Stephen K. Robinson processes a sample in the Advanced Gradient Heating Facility (AGHF). Right: John H. Glenn operates the Osteoporosis Experiment in Orbit (OSTEO) payload investigating the behavior of bone cells in microgravity.

Scott E. Parazynski prepares an experiment in the Microgravity Science Glovebox Chiaki Mukai examines plants grown in the Biological Research in Canisters (BRIC) experiment
Left: Scott E. Parazynski prepares an experiment in the Microgravity Science Glovebox. Right: Chiaki Mukai examines plants grown in the Biological Research in Canisters (BRIC) experiment.

For the remainder of the mission, the seven-member crew busied itself with conducting the 80 experiments in the shuttle’s middeck, the Spacehab, and in the payload bay.

Chiaki Mukai operates the Vestibular Function Experiment Unit (VFEU) investigation the vestibular systems of toadfish John H. Glenn removes cartridges from the Advanced Separation (ADSEP) experiment Steven Lindsey operates the BIOBOX used to store biological samples
Left: Chiaki Mukai operates the Vestibular Function Experiment Unit (VFEU) investigation the vestibular systems of toadfish. Middle: John H. Glenn removes cartridges from the Advanced Separation (ADSEP) experiment. Right: Steven Lindsey operates the BIOBOX used to store biological samples.

Pedro F. Duque operates the Microencapsulation Electrostatic Processing System (MEPS) experiment Chiaki Mukai operates the high-definition camcorder provided by the Japanese company NHK John H. Glenn takes one of the 2,500 Earth observation images obtained during the STS-95 mission
Left: Pedro F. Duque operates the Microencapsulation Electrostatic Processing System (MEPS) experiment. Middle: Chiaki Mukai operates the high-definition camcorder provided by the Japanese company NHK. Right: John H. Glenn takes one of the 2,500 Earth observation images obtained during the STS-95 mission.

Photograph of the Hawaiian Islands  taken by the STS-95 crew Photograph of Houston taken by the STS-95 crew Photograph of Florida taken by the STS-95 crew Photograph of Yemen and the Horn of Africa taken by the STS-95 crew
A selection of the Earth observation photographs taken by the STS-95 crew. Left: The Hawaiian Islands. Middle left: Houston. Middle right: Florida. Right: Yemen and the Horn of Africa.

STS-95 astronauts, clockwise from lower left, Pedro F. Duque, Chiaki Mukai, Scott E. Parazynski, John H. Glenn, Curtis L. Brown, Steven W. Lindsey, and Stephen K. Robinson Brown, left, and Lindsey review entry checklists before donning their launch and entry suits in preparation for returning to Earth Mukai, left, and Duque help Glenn, center, put on his launch and entry suit for reentry
Left: STS-95 astronauts, clockwise from lower left, Pedro F. Duque, Chiaki Mukai, Scott E. Parazynski, John H. Glenn, Curtis L. Brown, Steven W. Lindsey, and Stephen K. Robinson. Middle: Brown, left, and Lindsey review entry checklists before donning their launch and entry suits in preparation for returning to Earth. Right: Mukai, left, and Duque help Glenn, center, put on his launch and entry suit for reentry.

On their last day in space, the crew finished the experiments, closed up the Spacehab module, donned their launch and entry suits, and strapped themselves into their seats to prepare for their return to Earth. They fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Brown piloted Discovery to a smooth landing at KSC’s Shuttle Landing Facility on Nov. 7, after completing 134 orbits around the Earth in 8 days, 21 hours, and 44 minutes. The astronauts exited Discovery about one hour after landing and immediately began their postflight data collection to measure their immediate physiological responses after returning to a 1 g environment. Ground crews towed Discovery to the Orbiter Processing Facility to begin preparing it for its next mission, STS-96, the first shuttle docking to the International Space Station. The astronauts returned to Houston’s Ellington Field, where a large crowd of well-wishers, including government officials and the media, welcomed them home.

Space Shuttle Discovery lands at NASA’s Kennedy Space Center (KSC) in Florida to end the nine-day STS-95 mission sts-95 postlanding Dignitaries including Isao Uchida, president of Japan’s National Space
Left: Space Shuttle Discovery lands at NASA’s Kennedy Space Center (KSC) in Florida to end the nine-day STS-95 mission. Middle: Dignitaries including Isao Uchida, president of Japan’s National Space Development Agency, KSC Director Roy D. Bridges, and NASA Administrator Daniel S. Goldin greet the returning STS-95 crew after their landing. Right: Dignitaries including Houston Mayor Lee P. Brown, left, U.S. Representative Sheila Jackson Lee, U.S. Senator Kay Bailey Hutchison, Administrator Goldin, and Johnson Space Center Director George W.S. Abbey greet the STS-95 crew at Ellington Field in Houston.

U.S. Senator Kay Bailey Hutchison addresses the crowd at Ellington Field gathered to welcome the STS-95 crew back to Houston NASA Administrator Daniel S. Goldin addresses the crowd at Ellington as the STS-95 astronauts listen
Left: U.S. Senator Kay Bailey Hutchison addresses the crowd at Ellington Field gathered to welcome the STS-95 crew back to Houston. Right: NASA Administrator Daniel S. Goldin addresses the crowd at Ellington as the STS-95 astronauts listen.

Enjoy the crew-narrated video about the STS-95 mission.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      Credit: NASA NASA has selected Troy Sierra JV, LLC of Huntsville, Alabama, to provide engineering, research, and scientific support at the agency’s Glenn Research Center in Cleveland.  
      The Test Facility Operations, Maintenance, and Engineering Services III contract is a cost-plus-fixed-fee, indefinite-delivery/indefinite-quantity contract with a maximum potential value of approximately $388.3 million. The performance period begins Jan. 1, 2026, with a three-year base period followed by a two-year option, and a potential six-month extension through June 2031.
      This contract will provide and manage the engineering, technical, manufacturing, development, operations, maintenance, inspection, and certification support services needed to conduct aerospace testing in NASA Glenn’s facilities and laboratories.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jan Wittry
      Glenn Research Center, Cleveland
      216-433-5466
      jan.m.wittry-1@nasa.gov
      Share
      Details
      Last Updated Sep 12, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center View the full article
    • By European Space Agency
      Image: Group photo taken at the General Assembly on Defence, Space and Cybersecurity, held on Friday 12 September 2025, at ESRIN, ESA’s Centre for Earth Observation Programmes in Italy. 
      The event was organised by the European Parliament and the European Commission, in collaboration with the European Space Agency, to promote dialogue between European and national decision-makers and industry leaders. Representatives from major European entities debated the future of the European Union, which is facing unprecedented challenges since the postwar period, in an increasingly complex geopolitical context. Participants examined Europe’s needs in key sectors such as space, cybersecurity, and defence, within the broader context of the Atlantic Alliance. Acting at the European level, as demonstrated by projects like Galileo, EGNOS, and Copernicus, not only brings extraordinary added value in terms of innovation, industrial competitiveness, economies of scale, and spending efficiency, but also strengthens Europe’s strategic autonomy, the security of its citizens, and the protection of its critical infrastructure.
      The group included experts from major European entities, including: Andrius Kubilius, European Commissioner for Defence and Space; Adolfo Urso, Italian Minister of Enterprises and Made in Italy; Matteo Piantedosi, Italian Minister of the Interior; Gen. B. Luigi Vinciguerra, Brigade General of the Guardia di Finanza – Head of the III Operations Department, General Command; Josef Aschbacher, Director General of the European Space Agency; Simonetta Cheli, Director of Earth Observation Programmes and Head of ESRIN; Carlo Corazza, Head of the European Parliament Office in Italy; Ammiraglio Giuseppe Cavo Dragone, Chairman of the NATO Military Committee; Teodoro Valente, President of the Italian Space Agency (ASI); Hans de Vries, Chief Cybersecurity and Operations Officer (COO) - ENISA; Fabio di Stefano, Communications at the European Parliament in Italy.
      Watch here a replay of ESA Director General's intervention and find the transcript of his speech.
      View the full article
    • By European Space Agency
      Image: Part of the Gibson Desert in Western Australia is featured in this image, captured by the Φsat-2 mission in June 2025. View the full article
    • By NASA
      Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

      Science on Artemis II will include seven main research areas:

      ARCHeR: Artemis Research for Crew Health and Readiness 

      NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

      Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

      The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

      Immune Biomarkers

      Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

      Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  
      NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

      The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

      AVATAR: A Virtual Astronaut Tissue Analog Response

      AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

      Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
      An organ chip for conducting bone marrow experiments in space. Credit: Emulate
      A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

      AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

      AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

      Artemis II Standard Measures

      The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

      The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

      All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

      Radiation Sensors Inside Orion

      During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

      Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

      Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

      Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

      Lunar Observations Campaign

      The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

      Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
      This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
      It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

      Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

      CubeSats

      Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

      Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

      ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
      K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
      Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
      TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
      Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...