Jump to content

NASA, Pacific Disaster Center Increase Landslide Hazard Awareness


Recommended Posts

  • Publishers
Posted

5 min read

NASA, Pacific Disaster Center Increase Landslide Hazard Awareness

Communities worldwide now have access to a powerful tool to increase their awareness of landslide hazards, thanks to NASA and the Pacific Disaster Center.

A person stands with their back to the camera, wearing a brown vest that says "USAID". They are looking at a tree-covered mountain in the distance, which has a large landslide going down it, covered in rocks, dirt, and debris. A village sits at the bottom of the hill. The sky is gray and cloudy.
A humanitarian worker from USAID observes the impacts of a landslide. USAID deployed an elite Disaster Assistance Response Team on Nov. 17, 2020, to lead the U.S. response to Hurricanes Eta and Iota.
USAID’s Bureau for Humanitarian Assistance

After years of development and testing, NASA’s Landslide Hazard Assessment for Situational Awareness model (LHASA) has been integrated into the Pacific Disaster Center’s (PDC) multi-hazard monitoring, alerting, and decision-support platform, DisasterAWARE. LHASA allows researchers to map rainfall-triggered landslide hazards, giving DisasterAWARE users around the world a robust tool for identifying, tracking, and responding to these threats. The aim is to equip communities with timely and critical risk awareness that bolsters disaster resilience and safeguards lives and livelihoods.

Landslides cause thousands of deaths and billions of dollars in damage every year. Developing countries often bear disproportionate losses due to lack of access to hazard early warning systems and other resources for effective risk reduction and recovery. Reports from the United Nations Office for Disaster Risk Reduction emphasize that early warning systems and early action are among the most effective ways to decrease disaster-related deaths and losses.

A map of Earth, with oceans shaded as black and land as gray. There are numerous circles of differing sizes covering the maps, with colors from white to pink to dark red indicating the number of reported landslide-related fatalities in each region. Many of these fatalaties are concetrated in South and Central America, Asia, India, and the South Pacific Islands, and coastal regions of each continent.
The distribution of reported fatalities from 10,804 rainfall-triggered landslides in NASA’s Global Landslide Catalog (GLC) from 2007 to 2017. White dots represent incidents with zero reported fatalities and dots in the color scale from pink to red represent incidents in the range of 1-5000 fatalities. The NASA landslides team, based primarily out of NASA’s Goddard Space Flight Center, develops the Global Landslide Catalog and LHASA with support from NASA’s Disasters program.
NASA Scientific Visualization Studio

“Some local authorities develop their own systems to monitor landslide risk, but there isn’t a global model that works in the same way. That’s what defines LHASA: it works all the time and it covers most regions of the world,” says Robert Emberson, NASA Disasters associate program manager and a key member of the NASA landslides team. “Thanks to our collaboration with the Pacific Disaster Center, this powerful landslide technology is now even more accessible for the communities that need it most.”

LHASA uses a machine learning model that combines data on ground slope, soil moisture, snow, geological conditions, distance to faults, and the latest near real-time precipitation data from NASA’s IMERG product (part of the Global Precipitation Measurement mission). The model has been trained on a database of historical landslides and the conditions surrounding them, allowing it to recognize patterns that indicate a landslide is likely.

The result is a landslide “nowcast” – a map showing the potential of rainfall-triggered landslides occurring for any given region within the past day. This map of hazard likelihood can help agencies and officials rapidly assess areas where the current landslide risk is high. It can also give disaster response teams critical information on where a landslide may have occurred so they can investigate and deploy life-saving resources.  

A man on a motorcycle is blocked by a landslide that has fallen across the road,  covering it in large boulders, rocks and debris. A few other men working their way around the blockage. The sky is blue and slightly cloudy, and they are in a forested area.
In 2021, a 7.2 magnitude earthquake struck Haiti, triggering a series of landslides across the country. Landslides can destroy infrastructure and impede the movement of people and life-saving aid.
United Nations World Food Programme

Partnering to Protect the Vulnerable

Generating landslide nowcasts is merely the first step. To be truly effective, vulnerable communities must receive the data in a way that is accessible and easy to integrate into existing disaster management plans. That’s where the Pacific Disaster Center comes in.

PDC is an applied research center managed by the University of Hawaii, and it shares NASA’s goal to reduce global disaster risk through innovative uses of science and technology.  Its flagship DisasterAWARE software provides early warnings and risk assessment tools for 18 types of natural hazards and supports decision-making by a wide range of disaster management agencies, local governments, and humanitarian organizations. Prominent users include the International Federation of Red Cross and Red Crescent Societies (IFRC), the United Nations Office for the Coordination of Humanitarian Affairs (UN OCHA), and the World Food Programme (WFP).

“The close pairing of our organizations and use of PDC’s DisasterAWARE platform for early warning has been a special recipe for success in getting life-saving information into the hands of decision-makers and communities around the world,” said Chris Chiesa, PDC deputy executive director.

The collaboration with PDC brings NASA’s landslide tool to tens of thousands of existing DisasterAWARE users, dramatically increasing LHASA’s reach and effectiveness. Chiesa notes that teams in El Salvador, Honduras, and the Dominican Republic have already begun using these new capabilities to assess landslide hazards during the 2023 rainy season.

A screenshot from PDC DisasterAWARE showing a map of the Indochinese Peninsula. The land is gray and the water is blue, except for a region in the center of the map covered by red and orange polygons indicating increased landslide hazard risk. There is a toolbar on the left side of the image, and an icon over the landslide region indicating a landslide event may be occurring.
This screenshot from PDC’s DisasterAWARE Pro software shows LHASA landslide hazard probabilities for Myanmar in Sept. 2023. Red areas indicate the highest risk for landslide occurrence within the past three hours, while orange and yellow indicate lesser risk.
Pacific Disaster Center

PDC’s software ingests and interprets LHASA model data and generates maps of landslide risk severity. It then uses the data to generate landslide hazard alerts for a chosen region that the DisasterAWARE mobile app pushes to users. These alerts give communities critical information on potential hazards, enabling them to take protective measures.

DisasterAWARE also creates comprehensive regional risk reports that estimate the number of people and infrastructure exposed to a disaster – focusing specifically on things like bridges, roads, and hospitals that could complicate relief efforts when damaged. This information is critical for allowing decision-makers to effectively deploy resources to the areas that need them most. 

A screenshot from PDC DisasterAWARE showing a disaster exposure report for the Indochinese Peninsula. A map of the region is on the left showing the area affected by increased landslide risk. On the right are statistics on the population exposed, critical infrastructure, and breakdown of key needs.
DisasterAWARE landside risk report for Myanmar, showing estimated population, infrastructure and capital exposure to landslide risk, as well as the community’s needs.
Pacific Disaster Center

This effort between NASA and the PDC builds upon a history of fruitful cooperation between the organizations. In 2022, they deployed a NASA global flood modeling tool to enhance DisasterAWARE’s flood early-warning capabilities. They have also shared data and expertise during multiple disasters, including Hurricane Iota in 2020, the 2021 earthquake in Haiti, and the devastating August 2023 wildfires in Maui, PDC’s base of operations.

“The LHASA model is all open-source and leverages publicly available data from NASA and partners,” says Dalia Kirschbaum, lead of the NASA landslides team and director of Earth Sciences at NASA’s Goddard Space Flight Center. “This enables other researchers and disaster response communities to adapt the framework to regional or local applications and further awareness at scales relevant to their decision-making needs.” Kirschbaum and her team were recently awarded the prestigious NASA Software of the Year award for their work developing LHASA. 

Share

Details

Last Updated
Oct 26, 2023

Related Terms

5 min read

NASA, Pacific Disaster Center Increase Landslide Hazard Awareness

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Artemis II SLS (Space Launch System) rocket poised to send four astronauts from Earth on a journey around the Moon next year may appear identical to the Artemis I SLS rocket. On closer inspection, though, engineers have upgraded the agency’s Moon rocket inside and out to improve performance, reliability, and safety.
      SLS flew a picture perfect first mission on the Artemis I test flight, meeting or exceeding parameters for performance, attitude control, and structural stability to an accuracy of tenths or hundredths of a percent as it sent an uncrewed Orion thousands of miles beyond the Moon. It also returned volumes of invaluable flight data for SLS engineers to analyze to drive improvements.
      Teams with NASA’s Exploration Ground Systems integrate the SLS (Space Launch System) Moon rocket with the solid rocket boosters onto mobile launcher 1 inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in March 2025. Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.NASA/Frank Michaux For Artemis II, the major sections of SLS remain unchanged – a central core stage, four RS-25 main engines, two five-segment solid rocket boosters, the ICPS (interim cryogenic propulsion stage), a launch vehicle stage adapter to hold the ICPS, and an Orion stage adapter connecting SLS to the Orion spacecraft. The difference is in the details.
      “While we’re proud of our Artemis I performance, which validated our overall design, we’ve looked at how SLS can give our crews a better ride,” said John Honeycutt, NASA’s SLS Program manager. “Some of our changes respond to specific Artemis II mission requirements while others reflect ongoing analysis and testing, as well as lessons learned from Artemis I.”
      Engineers have outfitted the ICPS with optical targets that will serve as visual cues to the astronauts aboard Orion as they manually pilot Orion around the upper stage and practice maneuvers to inform docking operations for Artemis III.
      The Artemis II rocket includes an improved navigation system compared to Artemis I.  Its communications capability also has been improved by repositioning antennas on the rocket to ensure continuous communications with NASA ground stations and the U.S. Space Force’s Space Launch Delta 45 which controls launches along the Eastern Range.
      An emergency detection system on the ICPS allows the rocket to sense and respond to problems and notify the crew. The flight safety system adds a time delay to the self-destruct system to allow time for Orion’s escape system to pull the capsule to safety in event of an abort.
      The separation motors that push the solid rocket booster away after the elements are no longer needed were angled an additional 15 degrees to increase separation clearance as the rest of the rocket speeds by.
      Additionally, SLS will jettison the spent boosters four seconds earlier during Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights.
      Engineers have incorporated additional improvements based on lessons learned from Artemis I. During the Artemis I test flight the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that was caused by unsteady airflow.
      To steady the airflow, a pair of six-foot-long strakes flanking each booster’s forward connection points on the SLS intertank will smooth vibrations induced by airflow during ascent, and the rocket’s electronics system was requalified to endure higher levels of vibrations.
      Engineers updated the core stage power distribution control unit, mounted in the intertank, which controls power to the rocket’s other electronics and protects against electrical hazards.
      These improvements have led to an enhanced rocket to support crew as part of NASA’s Golden Age of innovation and exploration.
      The approximately 10-day Artemis II test flight is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
      https://www.nasa.gov/artemis
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.631.9126
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Artemis Artemis 2 Exploration Ground Systems Marshall Space Flight Center Explore More
      2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 6 min read Artemis II Crew to Advance Human Spaceflight Research
      Article 5 days ago 9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      It’s been 30 years since the discovery of the first planet around another star like our Sun. With every new discovery, scientists move closer to answering whether there are other planets like Earth that could host life as we know it. NASA/JPL-Caltech The milestone highlights the accelerating rate of discoveries, just over three decades since the first exoplanets were found.
      The official number of exoplanets — planets outside our solar system — tracked by NASA has reached 6,000. Confirmed planets are added to the count on a rolling basis by scientists from around the world, so no single planet is considered the 6,000th entry. The number is monitored by NASA’s Exoplanet Science Institute (NExScI), based at Caltech’s IPAC in Pasadena, California. There are more than 8,000 additional candidate planets awaiting confirmation, with NASA leading the world in searching for life in the universe.
      See NASA's Exoplanet Discoveries Dashboard “This milestone represents decades of cosmic exploration driven by NASA space telescopes — exploration that has completely changed the way humanity views the night sky,” said Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters in Washington. “Step by step, from discovery to characterization, NASA missions have built the foundation to answering a fundamental question: Are we alone? Now, with our upcoming Nancy Grace Roman Space Telescope and Habitable Worlds Observatory, America will lead the next giant leap — studying worlds like our own around stars like our Sun. This is American ingenuity, and a promise of discovery that unites us all.”
      Scientists have found thousands of exoplanets (planets outside our solar system) throughout the galaxy. Most can be studied only indirectly, but scientists know they vary widely, as depicted in this artist’s concept, from small, rocky worlds and gas giants to water-rich planets and those as hot as stars. NASA’s Goddard Space Flight Center The milestone comes 30 years after the first exoplanet was discovered around a star similar to our Sun, in 1995. (Prior to that, a few planets had been identified around stars that had burned all their fuel and collapsed.) Although researchers think there are billions of planets in the Milky Way galaxy, finding them remains a challenge. In addition to discovering many individual planets with fascinating characteristics as the total number of known exoplanets climbs, scientists are able to see how the general planet population compares to the planets of our own solar system.
      For example, while our solar system hosts an equal number of rocky and giant planets, rocky planets appear to be more common in the universe. Researchers have also found a range of planets entirely different from those in our solar system. There are Jupiter-size planets that orbit closer to their parent star than Mercury orbits the Sun; planets that orbit two stars, no stars, and dead stars; planets covered in lava; some with the density of Styrofoam; and others with clouds made of gemstones.
      “Each of the different types of planets we discover gives us information about the conditions under which planets can form and, ultimately, how common planets like Earth might be, and where we should be looking for them,” said Dawn Gelino, head of NASA’s Exoplanet Exploration Program (ExEP), located at the agency’s Jet Propulsion Laboratory in Southern California. “If we want to find out if we’re alone in the universe, all of this knowledge is essential.” 
      Searching for other worlds
      Fewer than 100 exoplanets have been directly imaged, because most planets are so faint they get lost in the light from their parent star. The other four methods of planet detection are indirect. With the transit method, for instance, astronomers look for a star to dim for a short period as an orbiting planet passes in front of it.
      To account for the possibility that something other than an exoplanet is responsible for a particular signal, most exoplanet candidates must be confirmed by follow-up observations, often using an additional telescope, and that takes time. That’s why there is a long list of candidates in the NASA Exoplanet Archive (hosted by NExScI) waiting to be confirmed.
      “We really need the whole community working together if we want to maximize our investments in these missions that are churning out exoplanets candidates,” said Aurora Kesseli, the deputy science lead for the NASA Exoplanet Archive at IPAC. “A big part of what we do at NExScI is build tools that help the community go out and turn candidate planets into confirmed planets.”
      The rate of exoplanet discoveries has accelerated in recent years (the database reached 5,000 confirmed exoplanets just three years ago), and this trend seems likely to continue. Kesseli and her colleagues anticipate receiving thousands of additional exoplanet candidates from the ESA (European Space Agency) Gaia mission, which finds planets through a technique called astrometry, and NASA’s upcoming Nancy Grace Roman Space Telescope, which will discover thousands of new exoplanets primarily through a technique called gravitational microlensing.
      Many telescopes contribute to the search for and study of exoplanets, including some in space (artists concepts shown here) and on the ground. Doing the work are organizations around the world, including ESA (European Space Agency), CSA (Canadian Space Agency), and NSF (National Science Foundation). NASA/JPL-Caltech Future exoplanets
      At NASA, the future of exoplanet science will emphasize finding rocky planets similar to Earth and studying their atmospheres for biosignatures — any characteristic, element, molecule, substance, or feature that can be used as evidence of past or present life. NASA’s James Webb Space Telescope has already analyzed the chemistry of over 100 exoplanet atmospheres.
      But studying the atmospheres of planets the size and temperature of Earth will require new technology. Specifically, scientists need better tools to block the glare of the star a planet orbits. And in the case of an Earth-like planet, the glare would be significant: The Sun is about 10 billion times brighter than Earth — which would be more than enough to drown out our home planet’s light if viewed by a distant observer.
      NASA has two main initiatives to try overcoming this hurdle. The Roman telescope will carry a technology demonstration instrument called the Roman Coronagraph that will test new technologies for blocking starlight and making faint planets visible. At its peak performance, the coronagraph should be able to directly image a planet the size and temperature of Jupiter orbiting a star like our Sun, and at a similar distance from that star. With its microlensing survey and coronagraphic observations, Roman will reveal new details about the diversity of planetary systems, showing how common solar systems like our own may be across the galaxy.
      Additional advances in coronagraph technology will be needed to build a coronagraph that can detect a planet like Earth. NASA is working on a concept for such a mission, currently named the Habitable Worlds Observatory.
      More about ExEP, NExScI 
      NASA’s Exoplanet Exploration Program is responsible for implementing the agency’s plans for the discovery and understanding of planetary systems around nearby stars. It acts as a focal point for exoplanet science and technology and integrates cohesive strategies for future discoveries. The science operations and analysis center for ExEP is NExScI, based at IPAC, a science and data center for astrophysics and planetary science at Caltech. JPL is managed by Caltech for NASA.
      /
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-119
      Share
      Details
      Last Updated Sep 17, 2025 Related Terms
      Exoplanets Exoplanet Discoveries Gas Giant Exoplanets Jet Propulsion Laboratory Kepler / K2 Nancy Grace Roman Space Telescope Neptune-Like Exoplanets Super-Earth Exoplanets Terrestrial Exoplanets TESS (Transiting Exoplanet Survey Satellite) The Search for Life Explore More
      7 min read How NASA’s Roman Mission Will Unveil Our Home Galaxy Using Cosmic Dust
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 4 min read NASA Analysis Shows Sun’s Activity Ramping Up
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Technicians completed integrating NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow-On Lagrange 1 (SWFO-L1) satellite to an Evolved Expendable Launch Vehicle Secondary Payload Adapter ring at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida on Sept. 4.
      Integrating the rideshares to the ring precedes the next prelaunch launch milestone: attaching NASA’s IMAP (Interstellar Mapping and Acceleration Probe) heliosphere mapping observatory to a payload adapter that connects to the ring. This configuration allows all three spacecraft to launch atop a single SpaceX Falcon 9 rocket, maximizing efficiency by sharing the ride to space.
      The Carruthers observatory will capture light from Earth’s geocorona, the part of the outer atmosphere that emits ultraviolet light. The observations will advance our understanding of space weather, planetary atmospheric evolution, and the long-term history of water on Earth.
      The SWFO-L1 satellite will keep a watchful eye on the Sun and the near-Earth environment for space weather activity. It is the first NOAA satellite designed specifically for and fully dedicated to continuous space weather observations. It will serve as an early warning beacon for destructive space weather events that could impact our technological dependent infrastructure and industries.
      The spacecraft will launch together aboard a SpaceX Falcon 9 rocket no earlier than 7:32 a.m. EDT on Tuesday, Sept. 23, from Launch Complex 39A at NASA Kennedy.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
  • Check out these Videos

×
×
  • Create New...