Members Can Post Anonymously On This Site
Compact Galaxies in Early Universe Pack a Big Punch
-
Similar Topics
-
By NASA
Research Astrophysicist and Roman’s Deputy Wide Field Instrument Scientist – Goddard Space Flight Center
From a young age, Ami Choi — now a research astrophysicist at NASA — was drawn to the vast and mysterious. By the fifth grade, she had narrowed her sights to two career paths: marine biology or astrophysics.
“I’ve always been interested in exploring big unknown realms, and things that aren’t quite tangible,” Choi said. That curiosity has served her all throughout her career.
In addition to conducting research, Ami Choi shares science with the public at various outreach events, including tours at NASA’s Goddard Space Flight Center in Greenbelt, Md. This photo captures one tour stop, outside the largest clean room at Goddard.Credit: NASA/Travis Wohlrab As a student at University Laboratory High School in Urbana, Illinois, Choi gravitated toward astrophysics and was fascinated by things like black holes. She studied physics as an undergraduate at the University of Chicago, though she says math and physics didn’t necessarily come easily to her.
“I wasn’t very good at it initially, but I really liked the challenge so I stuck with it,” Choi said.
Early opportunities to do research played a pivotal role in guiding her career. As an undergraduate, Choi worked on everything from interacting galaxies to the stuff in between stars in our galaxy, called the interstellar medium. She learned how to code, interpret data, and do spectroscopy, which involves splitting light from cosmic objects into a rainbow of colors to learn about things like their composition.
After college, Choi read an article about physicist Janet Conrad’s neutrino work at Fermilab and was so inspired by Conrad’s enthusiasm and inclusivity that she cold-emailed her to see if there were any positions available in her group.
On October 14, 2023, Ami took a break from a thermal vacuum shift to snap a selfie with a partial eclipse. She was visiting BAE, Inc. in Boulder, Co., where the primary instrument for NASA’s Nancy Grace Roman Space Telescope was undergoing testing. Credit: Courtesy of Ami Choi “That one email led to a year at Fermilab working on neutrino physics,” Choi said.
She went on to earn a doctorate at the University of California, Davis, where she studied weak gravitational lensing — the subtle warping of light by gravity — and used it to explore dark matter, dark energy, and the large-scale structure of the universe.
Her postdoctoral work took Choi first to the University of Edinburgh in Scotland, where she contributed to the Kilo-Degree Survey, and later to The Ohio State University, where she became deeply involved in DES (the Dark Energy Survey) and helped lay the groundwork for the Nancy Grace Roman Space Telescope — NASA’s next flagship astrophysics mission.
“One of my proudest moments came in 2021, when the DES released its third-year cosmology results,” Choi said. “It was a massive team effort conducted during a global pandemic, and I had helped lead as a co-convener of the weak lensing team.”
Choi regularly presents information about NASA’s Nancy Grace Roman Space Telescope to fellow scientists and the public. Here, she gives a Hyperwall talk at an AAS (American Astronomical Society) meeting.Credit: Courtesy of Ami Choi After a one-year stint at the California Institute of Technology in Pasadena, where Choi worked on SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer)—an observatory that’s surveying stars and galaxies—she became a research astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She also serves as the deputy Wide Field Instrument scientist for Roman. Choi operates at the intersection of engineering, calibration, and cosmology, helping translate ground-based testing into flight-ready components that will help Roman reveal large swaths of the universe in high resolution.
“I’m very excited for Roman’s commissioning phase — the first 90 days when the spacecraft will begin transmitting data from orbit,” Choi said.
Choi, photographed here in Death Valley, finds joy in the natural world outside of work. She cycles, hikes, and tends a small vegetable garden with a friend from grad school. Credit: Insook Choi (used with permission) She’s especially drawn to so-called systematics, which are effects that can alter the signals scientists are trying to measure. “People sometimes think of systematics as nuisances, but they’re often telling us something deeply interesting about either the physics of something like a detector or the universe itself,” Choi said. “There’s always something more going on under the surface.”
While she’s eager to learn more about things like dark energy, Choi is also looking forward to seeing all the other ways our understanding of the universe grows. “It’s more than just an end goal,” she said. “It’s about everything we learn along the way. Every challenge we overcome, every detail we uncover, is an important discovery too.”
For those who hope to follow a similar path, Choi encourages staying curious, being persistent, and taking opportunities to get involved in research. And don’t let the tricky subjects scare you away! “You don’t have to be perfect at math or physics right away,” she said. “What matters most is a deep curiosity and the tenacity to keep pushing through.”
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Sep 09, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related Terms
Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard View the full article
-
By NASA
Deputy Project Manager for Resources – Goddard Space Flight Center
Katie Bisci, photographed here with a model of NASA’s Nancy Grace Roman Space Telescope, Credit: NASA/Jolearra Tshiteya How are you helping set the stage for the Roman mission?
I’m a deputy project manager for resources on the Nancy Grace Roman Space Telescope team, sharing the role with Kris Steeley. Together, we oversee the business team, finance, outreach, scheduling, and more. I focus more on the “down and in” of the day-to-day team — helping the financial team, resource utilization across the project, and support service contracts management — while Kris handles more of the “up and out” external work with center management and NASA Headquarters. Kris and I collaborate on many things as well. The two of us have been together on Roman for many years, and we have definitely become one brain in many aspects of the role. The main goal in the job is programmatics: We need to understand and help along the technical parts of the mission, while also supporting cost and schedule control since Roman is a cost-capped mission. I try to make sure that I partner with our engineers to understand the technical part of Roman as much as possible. I find that I can’t do my job well on the programmatic side without working together closely with our engineers to understand the hardware and testing.
What drew you to NASA? Did you always intend to work here?
I think I always knew I wanted to go into the business and finance side of things, but I thought I’d end up at a big investment bank. I interned at one during college, but it just didn’t feel right for me. After graduating, I worked on corporate events for defense contractors in New York City. Then my husband got a job in Annapolis, Maryland, and I took a leap and applied for a resource analyst job at NASA, where some college friends were working. Looking back, as an oldest daughter it probably should have been obvious that project management would be a good fit! Once I got to NASA, I was really drawn in by the missions and work we do. It was so different from the corporate world. Being able to work on some of the coolest missions with some of the most brilliant minds out there is a gift. Almost 15 years later, I’m still here.
How did your career grow from there?
After serving as a resource analyst in the Safety and Mission Assurance Directorate at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, I moved into the center’s Astrophysics Projects Division, where I began working on Roman in 2012, back when it was just a small study called WFIRST (Wide Field Infrared Survey Telescope). I could never have imagined at the time what that small study would turn into. People at NASA often say they “grew up” on the James Webb Space Telescope, and for me I definitely “grew up” on Roman. I became the mission business manager, then financial manager, and now a deputy project manager for resources. I feel lucky that most of my career has been spent on Roman. Adding it up, I’ve been on this project for over a decade. I’ve worked with so many amazing people, not just at NASA Goddard, but across the United States. It’s hard to believe we are so close to launching.
What’s been the highlight of your career so far?
Becoming part of the management team on Roman, for sure. Working with the leadership team has been incredible. The best part about Roman is the people. It still cracks me up to look at the plethora of people we have in the same room for our weekly senior staff meeting, from the programmatic and finance types like myself, to engineers leading super complicated integration and test programs, Ph.D.s, and some of the most brilliant science minds I will probably ever know. The Roman team is amazing, and those relationships are what keep me excited to come to work every day.
Has your work influenced your understanding or appreciation of astronomy?
Absolutely. I’ve learned so much just by being around brilliant people like our project scientist Julie McEnery. I even recently gave a talk about Roman at my daughter’s school! Being able to stand up in front of a group of children and talk about what Roman science is going to do is something I never would have been able to do prior to working here. I’ve learned about how the Hubble Space Telescope, Webb, and Roman all build on each other during my time on this project. And it’s really incredible science. I’ve also developed a deep admiration for the engineers who have built Roman. As a business focused person, our engineering team has really helped me understand the different facets of what our engineering team does on Roman. They are so patient with me! It’s really fulfilling to be a small part of something so big.
What advice do you have for others who are interested in doing similar work?
If you’re in finance, don’t just learn the numbers — learn the work behind them. Understand the mission, the tech, the people. That’s what helps you move from analyst to leader. People can tell when you really get what they’re doing, and that’s how you become a better partner and manager.
What’s life like outside NASA?
I have three kids — ages 9, 5, and 3 — so life is busy! When I’m not working, I’m usually at their sports games or chauffeuring them around to one event or another. It’s a little bit of a rat race, but this season of life is also really fun. Recently, my family and I have gotten back into traveling now that my kids are a little bit older. We took a spring break trip to Europe, which was fantastic. Spending time with my family and friends is everything. Whether it’s going to the beach, spending time at the pool, or hanging out on the sideline of a lacrosse game, just like at work it’s being with my people that I thrive on. And maybe one day I will have time for more hobbies again!
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Aug 26, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related Terms
Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard View the full article
-
By NASA
A collaboration between NASA and the small business Aloft Sensing produced a new compact radar system that will enable researchers to leverage High Altitude Long Endurance (HALE) platforms to observe dynamic Earth systems. This new radar is small, provides highly sensitive measurements, and doesn’t require GPS for positioning; eventually, it could be used on vehicles in space.
HALE InSAR flies aboard a high-altitude balloon during a test-flight. This lightweight instrument will help researchers measure ground deformation and dynamic Earth systems. Credit: Aloft Sensing Long before a volcano erupts or a mountainous snowpack disappears, millimeter-scale changes in Earth’s surface indicate larger geologic processes are at work. But detecting those minute changes, which can serve as early warnings for impending disasters, is difficult.
With support from NASA’s Earth Science Technology Office (ESTO ) a team of researchers from the small aerospace company Aloft Sensing is developing a compact radar instrument for observing Earth’s surface deformation, topography, and vegetation with unprecedented precision.
Their project, “HALE InSAR,” has demonstrated the feasibility of using high-altitude, long-endurance (HALE) vehicles equipped with Interferometric Synthetic Aperture Radar (InSAR) to observe changes in surface deformation mere millimeters in size and terrain information with centimetric vertical accuracy.
“It’s a level of sensitivity that has eluded traditional radar sensors, without making them bulky and expensive,” said Lauren Wye, CEO of Aloft Sensing and principal investigator for HALE InSAR.
HALE vehicles are lightweight aircraft designed to stay airborne for extended periods of time, from weeks to months and even years. These vehicles can revisit a scene multiple times an hour, making them ideal for locating subtle changes in an area’s geologic environment.
InSAR, a remote sensing technique that compares multiple images of the same scene to detect changes in surface topography or determine structure, is also uniquely well-suited to locate these clues. But traditional InSAR instruments are typically too large to fly aboard HALE vehicles.
HALE InSAR is different. The instrument is compact enough for a variety of HALE vehicles, weighing less than 15 pounds (seven kilograms) and consuming fewer than 300 watts of power, about as much energy as it takes to power an electric bike.
HALE InSAR leverages previously-funded NASA technologies to make such detailed measurements from a small platform: a novel electronically steered antenna and advanced positioning algorithms embedded within an agile software-defined transceiver. These technologies were developed under ESTO’s Instrument Incubation Program (IIP) and Decadal Survey Incubation (DSI) Program, respectively.
“All of the design features that we’ve built into the instrument are starting to showcase themselves and highlight why this payload in particular is distinct from what other small radars might be looking to achieve,” said Wye.
One of those features is a flat phased array antenna, which gives users the ability to focus HALE InSAR’s radar beam without physically moving the instrument. Using a panel about the size of a tablet computer, operators can steer the beam electronically, eliminating the need for gimbles and other heavy components, which helps enable the instrument’s reduced size and weight.
A close up HALE InSAR fixed to a high-altitude airship. The flat planar antenna reduces the instruments mass and eliminates the need for gimbles and other heavy components. Credit: Aloft Sensing “SAR needs to look to the side. Our instrument can be mounted straight down, but look left and right on every other pulse such that we’re collecting a left-looking SAR image and a right-looking SAR image essentially simultaneously. It opens up opportunities for the most mass-constrained types of stratospheric vehicles,” said Wye.
Using advanced positioning algorithms, HALE InSAR also has the unique ability to locate itself without GPS, relying instead on feedback from its own radar signals to determine its position even more accurately. Brian Pollard, Chief Engineer at Aloft Sensing and co-investigator for HALE InSAR, explained that precise positioning is essential for creating high-resolution data about surface deformation and topography.
“SAR is like a long exposure camera, except with radio waves. Your exposure time could be a minute or two long, so you can imagine how much smearing goes on if you don’t know exactly where the radar is,” said Pollard.
Navigating without GPS also makes HALE InSAR ideal for field missions in austere environments where reliable GPS signals may be unavailable, increasing the instrument’s utility for national security applications and science missions in remote locations.
The Aloft Sensing team recently achieved several key milestones, validating their instrument aboard an airship at 65,000 feet as well as small stratospheric balloons. Next, they’ll test HALE InSAR aboard a fixed wing HALE aircraft. A future version of their instrument could even find its way into low Earth orbit on a small satellite.
Wye credits NASA support for helping her company turn a prototype into a proven instrument.
“This technology has been critically enabled by ESTO, and the benefit to science and civil applications is huge,” said Wye. “It also exemplifies the dual-use potential enabled by NASA-funded research. We are seeing significant military interest in this capability now that it is reaching maturity. As a small business, we need this hand-in-hand approach to be able to succeed.”
For more information about opportunities to work with NASA to develop new Earth observation technologies, visit esto.nasa.gov.
For additional details, see the entry for this project on NASA TechPort.
Project Lead: Dr. Lauren Wye, CEO, Aloft Sensing
Sponsoring Organization: NASA’s Instrument Incubation Program (IIP)
Share
Details
Last Updated Aug 19, 2025 Related Terms
Earth Science Division Earth Science Technology Office Science-enabling Technology Technology Highlights Explore More
1 min read Snapshot Wisconsin Celebrates 10 Years and 100 Million Photos Collected!
The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this…
Article
2 weeks ago
2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
Article
1 month ago
7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery
Article
2 months ago
View the full article
-
By NASA
NASA announced 10 winning teams for its latest TechLeap Prize — the Space Technology Payload Challenge — on June 26. The winners emerged from a record-breaking field of more than 200 applicants to earn cash prizes worth up to $500,000, if they have a flight-ready unit. Recipients may also have the opportunity to flight test their technologies.
NASA’s Biological and Physical Sciences (BPS) division is supporting the emerging space economy through challenges like TechLeap. The projects receive funding through the Commercially Enabled Rapid Space Science (CERISS) initiative, which pairs government research goals with commercial innovation.
Two awardees’ capabilities specifically address BPS research priorities, which include conducting investigations that inform future space crops and advance precision health.
Ambrosia Space Manufacturing Corporation is developing a centrifuge system to separate nutrients from cell cultures — potentially creating space-based food processing that could turn algae into digestible meals for astronauts.
Helogen Corporation is building an automated laboratory system that can run biological experiments without requiring astronaut involvement and may be able to transmit real-time data to researchers on Earth without having to wait for physical samples to return.
“The innovations of these small- and midsize businesses could enable NASA to accelerate the pace of critical research,” says Dan Walsh, BPS’s program executive for CERISS. “It’s also an example of NASA enabling the emerging space industry to grow and thrive beyond big corporations.”
Small Packages with Big Ambitions
Every inch and ounce counts on a spacecraft, which means the winning teams have to think small while solving big problems.
Commercial companies play a pivotal role in enabling space-based research — they bring fresh approaches to ongoing challenges. But space missions demand a different kind of innovation, and TechLeap teams face both time and size constraints for their experiments.
Winners have six to nine months to demonstrate that their concepts work. That’s a significant contrast from traditional space technology development, which can stretch for years.
The research serves a larger purpose as well. The technology helps NASA “know before we go” on longer, deep-space missions to the Moon and Mars. Understanding how technologies behave in microgravity or extreme environments can prevent costly failures when astronauts are far from Earth.
Small investments in proof-of-concept technologies can bring in a high ROI. With the TechLeap Prize, BPS is betting that big ideas will come in small packages.
Related Resources
TechLeap Prize – Space Technology Payload Challenge (STPC)
Space Technology Payload Challenge Winners
Commercially Enabled Rapid Space Science Initiative
View the full article
-
By NASA
Sylvie Crowell Credit: NASA Sylvie Crowell, a materials researcher at NASA’s Glenn Research Center in Cleveland, has received a NASA Early Career Initiative (ECI) award for a research proposal titled “Lunar Dust Reduction through Electrostatic Adhesion Mitigation (L-DREAM).” The research focuses on developing a passive lunar dust mitigation coating for solar cells and thermal control surfaces.
Operated under the NASA Space Technology Mission Directorate, the award will fund Crowell’s research in fiscal year 2026, beginning Oct. 1, 2025.
NASA’s ECI is a unique opportunity for the best and brightest of NASA’s early career researchers to lead hands-on technology development projects. The initiative aims to invigorate NASA’s technological base and best practices by partnering early career NASA leaders with external innovators.
Return to Newsletter View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.