Jump to content

Recommended Posts

  • Publishers
Posted

6 min read

Mercury’s Strange Hollows

Enigmatic depressions on the surface have puzzled scientists since the 1970s

NASA’s MESSENGER probe has discovered a surprise on Mercury: Something is digging “hollows” in the surface of the innermost planet.

NASA’s MESSENGER spacecraft discovered strange hollows on the surface of Mercury. Images taken from orbit revealed thousands of mysterious depressions, pitted and uneven, in areas all across the planet, up to a half-mile (800 meters) across and 120 feet (37 meters) deep. This mosaic view of the Raditladi impact basin includes individual frames capturing areas about 12 miles (20 km) wide, which merged high-resolution monochrome images from MESSENGER’s Narrow Angle Camera with a lower-resolution enhanced-color image from its Wide Angle Camera.

For decades, scientists have been puzzling over strange hollows on Mercury’s surface, thousands of peculiar depressions at a variety of longitudes and latitudes, ranging in size from 60 feet to more than a half-mile across (18-800 meters), and up to 120 feet deep (37 meters). No one knows how they got there.

And while none are as spooky as the Sleepy Hollow of Washington Irving’s legend, Mercury’s hollows are just as mysterious and, so far, seen nowhere else in the universe. 

Hollows on Mercury
NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science

“There’s essentially no atmosphere on Mercury,” said planetary geologist David Blewett, of the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. “With no atmosphere, wind doesn’t blow and rain doesn’t fall, so the hollows weren’t carved by wind or water. Other forces must be at work.”

Mercury, the smallest planet in the solar system and closest to the Sun, is battered by heat, radiation, and solar wind; its extreme temperatures range from 800°F (430°C) on the sunny side, to as low as -290°F (-180°C) on the night side. It’s slightly larger, and similar to our Moon – airless, rocky, and peppered with impact craters large and small – but Mercury has rarely been visited by spacecraft, and retains many of its secrets.

Scientists got their first tantalizing glimpses of the hollows when the Mariner 10 probe flew past Mercury in the 1970s, and captured low-resolution shots of curious bright areas in some craters. 

NASA returned to the small planet with the MESSENGER mission, which first flew past Mercury in 2008, then settled into orbit in 2011.

That spacecraft circled the planet more than 4,000 times in four years, collecting hundreds of thousands of images and other data, and giving researchers new insights into this little-explored world. Mariner had cataloged less than half the planet’s surface during its brief visits 40 years earlier.

A Toast to Dear Old Poe
A view of hollows on the crater named for author Edgar Allan Poe on Mercury, “This sinfully scintillant planet.” In this representation, Poe’s raven-colored rim stands out from the tan volcanic plains that surround it. Tiny hollows speckle the dark rim like blue-white stars in the blackness of night. The image was one of hundreds of high-resolution targeted color observations by MESSENGER’s Wide Angle Camera, using filters of red, green, and blue.
NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science

“A Little Valley…Among High Hills”

MESSENGER (the Mercury Surface, Space Environment, Geochemistry and Ranging mission) finally provided a sharper view of the enigmatic tracts. To differentiate them from other surface features, researchers dubbed them “hollows” (akin to Washington Irving’s description of the terrain in “The Legend of Sleepy Hollow” – “a little valley or rather lap of land among high hills.”)

The probe sent back finely detailed, beautiful images of the hollows, looking in some color-enhanced mosaics like sheets of copper corroded with blue-green patina. In others – such as shots of Sander crater in Mercury’s vast Caloris basin – the strange landforms, etched and ragged, glow bright blue amid the surrounding crater walls and mounds. And yet the images and other data, from MESSENGER’s X-Ray Spectrometer, Laser Altimeter, and other instruments, gave only hints and no definitive answers about the hollows.

Measurements from NASA MESSENGER MLA instrument during the spacecraft greater than four-year orbital mission have mapped the topography of Mercury northern hemisphere in great detail.
This enhanced-color image from the MESSENGER mission shows (from left to right) the craters Munch (38 miles, or 61 km, wide), Sander (32 miles, or 52 km), and Poe (50 miles, 81 km), which lie in the northwest portion of Mercury’s Caloris basin. The hollows are the bright blue areas covering the floor of Sander and dotting the rims of Munch and Poe. The hollows are highly reflective and naturally appear bluish; in images like this, the spacecraft’s Wide Angle Camera used its 11 color filters to exaggerate the color spectrum, to highlight the variation among surface materials.
NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science

”When we got high-resolution views back of Sander, the floor of the crater just looked amazing,” said Carolyn Ernst of Johns Hopkins APL, a deputy instrument scientist on the MESSENGER mission. “It had all these crazy-shaped, irregular depressions, and it had this bright material outside of it. And to this day, we don’t fully know what causes them.”

Researchers observed that the hollows are among the youngest and brightest features on the planet, especially compared to the impact craters where most reside, which date back as far as 4 billion years. The hollows, on the other hand, are relatively shiny and new – about 100,000 years old, on average – and may still be evolving today.


MESSENGER mission scientists Ralph McNutt and Carolyn M. Ernst, both with Johns Hopkins APL, discuss what they’ve learned about Mercury’s hollows, and how much more needs to be figured out.

Clues and Theories

“We’ve been thinking of Mercury as a relic – a place that’s really not changing much anymore, except by impact cratering,” Blewett said. “But the hollows appear to be younger than the craters in which they are found, and that means Mercury’s surface is still evolving in a surprising way.”

One possible clue to their formation is that many of the hollows are associated with central mounds or mountains inside Mercury’s impact craters. These so-called “peak rings” are thought to be made of material forced up from the depths by an impact that formed the crater. Ernst suggested a large object slamming into the planet, with the meteorite forming a new crater and tossing material from deep underground onto Mercury’s surface.

The newly-excavated material could be unstable, finding itself suddenly exposed at the surface. Because Mercury is so close to the Sun, it’s battered by fierce heat and extreme space weather – factors that might play a role in forming hollows, added Blewett, a member of the science team for MESSENGER.

”Certain minerals, for example those that contain sulfur and other volatiles, would be easily vaporized by the onslaught of heat, solar wind, and micrometeoroids that Mercury experiences on a daily basis,” he said. “Perhaps sulfur is vaporizing, leaving just the other minerals, and therefore weakening the rock and making it spongier. Then the rock would crumble and erode more readily, forming these depressions.”

Looking Ahead

NASA’s Mars Reconnaissance Orbiter spotted similar depressions in the carbon dioxide ice at Mars’ south pole, giving that surface a “swiss cheese” appearance. But on Mercury the depressions are found in rock and often have bright interiors and halos.

“We’ve never seen anything quite like this on a rocky surface,” Blewett said.

Other theories include the idea that darker areas on Mercury’s surface are graphite deposits that, when pummeled and destroyed by solar wind, collapse and leave behind pitted, hollowed areas of only the much brighter, blue-tinged materials.

We’ve never seen anything quite like this on a rocky surface.

David Blewett

David Blewett

Johns Hopkins University Applied Physics Laboratory MESSENGER mission participating scientist

MESSENGER finally ran out of fuel and crashed into Mercury in April 2015, but researchers are still sifting through the data it collected. Scientists are also eagerly anticipating the arrival of BepiColombo to Mercury in 2025 and what secrets the mission will reveal. A joint European-Japanese venture, with two orbiters riding together, the craft made their first flyby of Mercury in October 2021 – only the third mission ever to visit the planet. 

In 1820, Washington Irving wrote of Sleepy Hollow being a place of “strange sights, …haunted spots, and twilight superstitions; stars shoot and meteors glare oftener across the valley than in any other part of the country.”
Likewise, Mercury has its own “ghosts” – craters in a previous life, later shrouded by lava – and has seen shooting stars and meteors peppering every part of its surface for billions of years. The craters they leave are named for artists and authors, including Nathaniel Hawthorne, Herman Melville, and Edgar Allan Poe, whose namesake crater contains hollows. Maybe one day Irving, their mentor and contemporary, will join their company. By then the true nature of Mercury’s strange hollows may be unmasked.

A Ghost Story
A Ghost Story

About the Author

agreicius

agreicius

Share

Details

Last Updated
Oct 17, 2023

Related Terms

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb
      This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). Credits:
      NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) A planetary system described as abnormal, chaotic, and strange by researchers has come into clearer view with NASA’s James Webb Space Telescope. Using Webb’s NIRCam (Near-Infrared Camera), researchers have successfully imaged one of two known planets surrounding the star 14 Herculis, located 60 light-years away from Earth in our own Milky Way galaxy.
      The exoplanet, 14 Herculis c, is one of the coldest imaged to date. While there are nearly 6,000 exoplanets that have been discovered, only a small number of those have been directly imaged, most of those being very hot (think hundreds or even thousands of degrees Fahrenheit). The new data suggests 14 Herculis c, which weighs about 7 times the planet Jupiter, is as cool as 26 degrees Fahrenheit (minus 3 degrees Celsius).
      Image: 14 Herculis c (NIRCam)
      This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) The team’s results covering 14 Herculis c have been submitted to The Astrophysical Journal Letters and were presented in a press conference Tuesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.
      “The colder an exoplanet, the harder it is to image, so this is a totally new regime of study that Webb has unlocked with its extreme sensitivity in the infrared,” said William Balmer, co-first author of the new paper and graduate student at Johns Hopkins University. “We are now able to add to the catalog of not just hot, young exoplanets imaged, but older exoplanets that are far colder than we’ve directly seen before Webb.”
      Webb’s image of 14 Herculis c also provides insights into a planetary system unlike most others studied in detail with Webb and other ground- and space-based `observatories. The central star, 14 Herculis, is almost Sun-like – it is similar in age and temperature to our own Sun, but a little less massive and cooler.
      There are two planets in this system – 14 Herculis b is closer to the star, and covered by the coronagraphic mask in the Webb image. These planets don’t orbit each other on the same plane like our solar system. Instead, they cross each other like an ‘X’, with the star being at the center. That is, the orbital planes of the two planets are inclined relative to one another at an angle of about 40 degrees. The planets tug and pull at one another as they orbit the star.
      This is the first time an image has ever been snapped of an exoplanet in such a mis-aligned system.
      Scientists are working on several theories for just how the planets in this system got so “off track.” One of the leading concepts is that the planets scattered after a third planet was violently ejected from the system early in its formation.
      “The early evolution of our own solar system was dominated by the movement and pull of our own gas giants,” added Balmer. “They threw around asteroids and rearranged other planets. Here, we are seeing the aftermath of a more violent planetary crime scene. It reminds us that something similar could have happened to our own solar system, and that the outcomes for small planets like Earth are often dictated by much larger forces.”
      Understanding the Planet’s Characteristics With Webb
      Webb’s new data is giving researchers further insights into not just the temperature of 14 Herculis c, but other details about the planet’s orbit and atmosphere.
      Findings indicate the planet orbits around 1.4 billion miles from the host star in a highly elliptical, or football-shaped orbit, closer in than previous estimates. This is around 15 times farther from the Sun than Earth. On average, this would put 14 Herculis c between Saturn and Uranus in our solar system.
      The planet’s brightness at 4.4 microns measured using Webb’s coronagraph, combined with the known mass of the planet and age of the system, hints at some complex atmospheric dynamics at play.
      “If a planet of a certain mass formed 4 billion years ago, then cooled over time because it doesn’t have a source of energy keeping it warm, we can predict how hot it should be today,” said Daniella C. Bardalez Gagliuffi of Amherst College, co-first author on the paper with Balmer. “Added information, like the perceived brightness in direct imaging, would in theory support this estimate of the planet’s temperature.”
      However, what researchers expect isn’t always reflected in the results. With 14 Herculis c, the brightness at this wavelength is fainter than expected for an object of this mass and age. The research team can explain this discrepancy, though. It’s called carbon disequilibrium chemistry, something often seen in brown dwarfs.
      “This exoplanet is so cold, the best comparisons we have that are well-studied are the coldest brown dwarfs,” Bardalez Gagliuffi explained. “In those objects, like with 14 Herculis c, we see carbon dioxide and carbon monoxide existing at temperatures where we should see methane. This is explained by churning in the atmosphere. Molecules made at warmer temperatures in the lower atmosphere are brought to the cold, upper atmosphere very quickly.”
      Researchers hope Webb’s image of 14 Herculis c is just the beginning of a new phase of investigation into this strange system.
      While the small dot of light obtained by Webb contains a plethora of information, future spectroscopic studies of 14 Herculis could better constrain the atmospheric properties of this interesting planet and help researchers understand the dynamics and formation pathways of the system.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Video: Eclipse/Coronagraph Animation
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Read more about Webb’s Impact on Exoplanet Research
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated Jun 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Exoplanets Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Studying Exoplanets The Universe View the full article
    • By Amazing Space
      What Is That Strange Dot Moving Across The Sun?
    • By USH
      On January 25, 2025, an Oklahoma City man recorded a baffling UFO that he described as a "plasma-filled jellybean." A concerned neighbor also spotted something unusual in the sky and soon, the entire neighborhood gathered outside, to witness the anomaly. 

      The mysterious object emitted a glow and moved erratically, mesmerizing onlookers. In his recorded footage, Frederick can be heard narrating the event. "I don’t hear anything, and it's moving unpredictably," he noted. "It looks like a jellybean, but the interior appears to be plasma." 
      Frederick decided to launch his drone for a closer look, but upon attempting to deploy his drone, he encountered unexplained technical failures. "My controller provides voice notifications," he explained. "It repeatedly announced, ‘unable to take off, electromagnetic interference." 
      After multiple attempts, he finally got the drone airborne, reaching approximately 1,000 feet beneath the UFO. However, just after capturing three images, the drone’s video function failed, and its battery, despite being fully charged, suddenly drained. "It had a 35-minute flight time," Frederick stated. "But right after taking those three pictures, the controller alerted me: ‘low battery, return to home." 
      Seeking expert insight, Frederick shared his footage and images with University of Oklahoma physics professor Mukremin Kilic. When asked about the sighting, Kilic remarked, "I don’t know what it is" and suggested the object was likely a drone. However, this theory does not explain why Frederick’s own drone experienced interference, raising further questions about the true nature of the UFO.
        View the full article
    • By USH
      The American Meteor Society website shared a video on their channel showing a fireball streaking across the skies of Michigan and Ohio on Sunday, January 19, 2025, around 01:31 UT. 

      Though, Meteor Society noted that the video might not actually depict a fireball event, leaving some viewers curious about the meaning behind this statement. 
      At the moment the fireball appears on camera, a strange object seems to materialize above it, expanding in size and partially obscuring the fireball before gradually fading out as the fireball continues its path through the sky. 
      This phenomenon has sparked varied interpretations. Some suggest it might indicate alien intervention, while others offer a more plausible explanation: the "object" is likely a water droplet on the camera lens, creating the illusion of interaction with the fireball. 
      However, since the Meteor Society suggested that it might not actually depict a fireball event, we might question whether it was truly a fireball, a meteor, including a water droplet, or something entirely different.
        View the full article
    • By USH
      In December 2024, reports began surfacing about strange events involving flashing streetlights house and building lights. These incidents, initially dismissed as isolated cases, have now been observed on a larger scale, spanning countries such as the U.S., Canada, and the UK. 

      Some observers theorize that drones or unidentified orbs might be responsible. These objects could emit electromagnetic interference, disrupting electrical systems and causing lights to flicker. However, no concrete evidence has linked these phenomena to drone activity. 
      Others suggest the lights could be a result of hackers targeting the power grid. Cybercriminals might be testing infrastructure vulnerabilities. While plausible, no definitive proof has emerged to support this explanation. 
      A more unconventional theory suggests that the flashing lights are a result of a phenomenon known as Streetlight Interference (SLI). Proponents argue that certain individuals, nicknamed "SLIders," possess psychic or psychokinetic abilities that unintentionally influence lighting systems. SLI remains scientifically unverified, with no successful replication in controlled settings.
      Some experts believe it might be mechanical faults in the electrical systems or or fluctuations in the power supply. However, this theory seems unlikely due to the widespread and simultaneous nature of the phenomenon, which has been reported across multiple countries, suggesting it is not a localized issue. 
      Or is this phenomenon linked to extraterrestrial activity? Some argue that aliens might use electromagnetic propulsion systems, potentially interfering with electrical systems, akin to the effects portrayed in films like 'Close Encounters of the Third Kind'. 
      Could the cause of these flashing lights be a harbinger of an impending global or cosmic event, or might it stem from something entirely beyond our understanding? 
      The two videos below show, besides the on going mysterious drones/UFO/orb sightings, several locations where street lights are flashing.
        View the full article
  • Check out these Videos

×
×
  • Create New...