Jump to content

60 Years Ago: NASA Selects Its Third Group of Astronauts


Recommended Posts

  • Publishers
Posted

On Oct. 17, 1963, NASA announced the selection of its third group of astronauts. Chosen from 720 military and civilian applicants, the newest group of 14 astronauts comprised the best educated class up to that time. Seven represented the U.S. Air Force, four the U.S. Navy, one the U.S. Marine Corps, and two were civilians. NASA selected them to fly the two-seat Gemini spacecraft designed to test techniques for the Apollo Moon landing program as well as the Apollo missions themselves. Tragically, four of their members died before making their first spaceflight. The 10 surviving members of the group flew 18 important missions in the Gemini and Apollo programs, with seven traveling to the Moon and four walking on its surface. In addition, one flew a long-duration mission aboard Skylab.

Group 3 astronauts pose following their introduction during the Oct. 17, 1963, press conference
The Group 3 astronauts pose following their introduction during the Oct. 17, 1963, press conference – front row, Edwin E. “Buzz” Aldrin, left, William A. Anders, Charles M. Bassett, Alan L. Bean, Eugene A. Cernan, and Roger B. Chaffee; back row, Michael Collins, left, R. Walter Cunningham, Donn F. Eisele, Theodore C. Freeman, Richard F. Gordon, Russell L. Schweickart, David R. Scott, and Clifton C. Williams.

On June 5, 1963, NASA announced that it would select 10-15 new candidates to augment the existing cadre of 15 active duty astronauts from its first two selections in 1959 and 1962. The agency had enough astronauts to staff the Gemini missions, but with Apollo missions then expected to begin in 1965, with up to four flights per year, it needed more astronauts. Selection criteria at the time for the candidates included U.S. citizenship, a degree in engineering or physical science, test pilot experience or 1,000 hours flying jets, 34 years old or younger, and no taller than six feet. From the 720 applications received by the July deadline, the selection board chose 136 candidates for further screening and narrowed that field down to 34 for extensive medical evaluations at Brooks Air Force Base (AFB) in San Antonio between July 31 and Aug. 15. The chair of the selection board, coordinator of astronaut activities Donald K. “Deke” Slayton, presented the names of the top 14 applicants to Robert R. Gilruth, director of the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, who approved the list. Slayton then called each of the winning candidates with the good news. On Oct. 17, he introduced the new astronauts during a press conference in Houston. On average, this third group of astronauts were younger, slightly taller and heavier than the previous two groups, and better educated, six with master’s degrees and one having earned a doctorate.

Mercury 7 astronaut and chief of operations and training for the astronaut office Walter M. Schirra
Mercury 7 astronaut and chief of operations and training for the astronaut office Walter M. Schirra, with back to camera, briefs the newly arrived 14 astronauts at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.

The Fourteen reported to work on Feb. 3, 1964, stationed initially at Houston’s Ellington AFB while construction of the MSC main campus on Clear Lake continued. During their first few months as astronauts, they visited various NASA centers and contractor facilities to become familiar with the space program’s major elements. Each astronaut received a technical assignment to gain expertise in specific aspects of spaceflight to pass their knowledge on to the rest of the group, and to help in the design of spacecraft, rockets, spacesuits, control systems, and simulators. Additionally, their 240-hour course work covered topics such as astronomy, aerodynamics, rockets, communications, space medicine, meteorology, upper atmospheric physics, navigation, orbital mechanics, computers, and geology. Because some of the group members could potentially receive assignments to land on the Moon, training including field trips to geologically interesting sites where they received instruction from geologists. They conducted jungle survival training in Panama, desert survival training around Reno, Nevada, and water survival training at the Pensacola, Florida, Naval Air Station.

Group 3 astronaut Russell L. “Rusty” Schweickart Schweickart, geologist Uel Clanton, Michael Collins, and Roger B. Chaffee during geology training near Bend, Oregon. David R. Scott and Richard F. Gordon examine a rock sample during a geology field trip to the Nevada Test Site at Yucca Flats
Left: Group 3 astronaut Russell L. “Rusty” Schweickart, center, gets hands on experience as capsule communicator (capcom) during Gemini IV, the first flight controlled from the Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Schweickart, geologist Uel Clanton, Michael Collins, and Roger B. Chaffee during geology training near Bend, Oregon. Right: David R. Scott, left, and Richard F. Gordon examine a rock sample during a geology field trip to the Nevada Test Site at Yucca Flats.

Of the 14, seven came from the U.S. Air Force (USAF), four from the U.S. Navy (USN), one from the U.S. Marine Corps (USMC), and two were civilians at the time of selection but had military experience. The astronauts included Edwin E. “Buzz” Aldrin (USAF), William A. Anders (USAF), Charles M. Bassett (USAF), Alan L. Bean (USN), Eugene A. Cernan (USN), Roger B. Chaffee (USN), Michael Collins (USAF), R. Walter Cunningham (civilian), Donn F. Eisele (USAF), Theodore C. “Ted” Freeman (USAF), Richard F. Gordon (USN), Russell L. “Rusty” Schweickart (civilian), David R. Scott (USAF), and Clifton C. “CC” Williams (USMC). Williams had the distinction as the first bachelor astronaut, a distinction he lost in July 1964.

Group 3 astronaut Edwin E. “Buzz” Aldrin Astronaut William A. Anders Charles M. Bassett
Group 3 astronauts Edwin E. “Buzz” Aldrin, left, William A. Anders, and Charles M. Bassett.

Aldrin, who wrote his thesis on orbital rendezvous techniques for his Ph.D. in astronautics from the Massachusetts Institute of Technology in Cambridge, earned the nickname Dr. Rendezvous. Appropriately, Slayton tasked him to help with mission planning. Aldrin received his first crew assignment as the backup pilot for Gemini IX that included training for a spacewalk. He put that experience, plus additional training in a neutral buoyancy simulator, or underwater training to better simulate weightlessness, during his four-day Gemini XII flight during which he successfully completed three spacewalks. Moving on to the Apollo program, Aldrin next served as the backup Command Module Pilot (CMP) for the Apollo 8 first lunar orbital mission. As the prime Lunar Module Pilot (LMP) on Apollo 11, Aldrin became the second man to walk on the Moon in July 1969. He retired from NASA the following year.

Slayton assigned Anders, who held a master’s degree in nuclear engineering, to follow the development of environmental controls for Gemini and Apollo spacecraft. His first mission assignment came as the backup pilot for Gemini XI, and then as prime LMP on Apollo 8. He is credited with taking the famous Earthrise photo while he and his crewmates orbited the Moon. He served as backup CMP on Apollo 11, before retiring from NASA in August 1969 to join the National Aeronautics and Space Council.

Bassett’s technical assignment included training and simulators. Slayton assigned him as pilot on Gemini IX, a mission that included docking and a spacewalk. Tragically, on Feb. 28, 1966, just three months before their planned mission, Bassett and his command pilot Elliott M. See died in the crash of their T-38 Talon aircraft as they approached Lambert International Airport in St. Louis in inclement weather.

Alan L. Bean Eugene A. Cernan Roger B. Chaffee
Group 3 astronauts Alan L. Bean, left, Eugene A. Cernan, and Roger B. Chaffee.

Bean’s primary technical assignment involved spacecraft recovery systems. Slayton first assigned him as backup command pilot on Gemini X with Williams as his pilot. He next served as the backup LMP on Apollo 9, the first mission to test the Lunar Module (LM) in Earth orbit. That put him in position as the prime LMP on Apollo 12. During that mission he became the fourth man to walk on the Moon. He later served as the commander for the 59-day Skylab 3 mission in 1973 and as the backup commander for the Apollo-Soyuz Test Project (ASTP) in 1975. He retired from NASA in 1981.

Cernan, with a master’s in aeronautical engineering, followed the development of spacecraft propulsion and the Agena docking target for Gemini missions. Slayton assigned him as backup pilot for Gemini IX, and following the deaths of See and Bassett, Cernan and his commander Thomas P. Stafford took over as the prime crew. As luck would have it, they did not have a chance to dock with an Agena as it did not make it to orbit. Cernan conducted the second American spacewalk during that mission. He served as Aldrin’s backup on Gemini XII and then as the backup LMP on Apollo 7. That rotated him to the prime crew on Apollo 10, the dress rehearsal for the Moon landing during which he and Stafford took their LM to within nine miles of the lunar surface. He served as backup commander for Apollo 14, and then as prime commander of Apollo 17, the final Apollo Moon landing mission, he left the last footprints of that program in the lunar soil in December 1972. He remains one of only three people to have traveled to the Moon twice. He retired from NASA in 1976.

Chaffee’s technical assignment led him to follow the development of spacecraft communications systems. In March 1966, Slayton assigned him to the first crewed Apollo mission, along with commander Virgil I. “Gus” Grissom and senior pilot Edward H. White. Tragically, the three died on Jan. 27, 1967, in a fire aboard their spacecraft during a ground test on the launch pad.

Michael Collins R. Walter Cunningham Donn F. Eisele
Group 3 astronauts Michael Collins, left, R. Walter Cunningham, and Donn F. Eisele.

Collins, who had applied for the 1962 class but did not get selected, followed the development of pressure suits and spacewalking systems. As his first crew assignment, he served as the backup pilot for the long duration Gemini VII mission. He next served as the pilot for Gemini X, the first mission to complete a rendezvous with two Agena targets, and during which he conducted two spacewalks. He briefly served as the CMP on the Apollo 8 crew before being sidelined by surgery to correct a bone spur in his neck. After his recovery, he served as the CMP on Apollo 11, the first Moon landing mission. He retired from NASA in 1970, and went on to serve as the director of the Smithsonian Institution’s National Air and Space Museum in Washington, D.C., overseeing the building of its new facility that opened for the nation’s bicentennial in 1976.

Cunningham, who held a master’s degree in physics and had nearly completed work on his Ph.D. when selected, oversaw the development of ground-based experiments to support spaceflights. Slayton assigned him to the second crewed Apollo mission, along with classmate Eisele and Walter M. Schirra as their commander. Later, Slayton reassigned them to back up the first Apollo crew of Grissom, White, and Chaffee. After the Apollo fire, Schirra, Eisele, and Cunningham became the prime crew for Apollo 7, the first crewed Apollo flight. After working on the Skylab program, he retired from NASA in 1971.

Slayton assigned Eisele, who held a master’s degree in astronautics, to oversee the development of spacecraft attitude control systems. Slayton assigned Eisele, along with Schirra and Cunningham to the second crewed Apollo mission, then reassigned them to back up the first Apollo crew. After the fire, Schirra, Eisele, and Cunningham became the prime crew for the first Apollo mission, completing the 11-day Apollo 7 mission in October 1968. Eisele later served as the backup CMP for Apollo 10. He retired from NASA in 1972.

Theodore C. Freeman Richard F. Gordon Russell L. “Rusty” Schweickart.
Group 3 astronauts Theodore C. Freeman, left, Richard F. Gordon, and Russell L. “Rusty” Schweickart.

With a master’s degree in aeronautical engineering, Freeman’s technical assignment involved following the development of the various boosters for the Gemini and Apollo programs. Tragically, before he received a flight assignment, Freeman died in the crash of a T-38 Talon aircraft on Oct. 31, 1964, near Ellington AFB in Houston. He was the first active duty astronaut to perish.

Slayton put Gordon in charge of following the design of cockpit controls. Gordon’s first crew assignment was as backup pilot for Gemini VIII, the first docking mission. He next served as the pilot for Gemini XI that completed the docking with their Agena target on the first revolution. He conducted two spacewalks during that mission. On his next assignment, he served as the backup CMP for Apollo 9, and then as prime CMP on Apollo 12, the second Moon landing mission. His last official assignment as backup commander of Apollo 15 would have led him to most likely be commander of Apollo 18, but budget cuts in September 1970 canceled that mission. He retired from NASA the following year.

Schweickart, the youngest member of this astronaut class and with a master’s in aeronautics and astronautics, oversaw the development and integration of inflight experiments. First assigned in March 1966 as Chaffee’s backup on the first crewed Apollo mission, Schweickart and his crew mates James A. McDivitt and fellow classmate Scott were reassigned to the mission to carry out the first in-orbit test of the LM. They flew that mission as Apollo 9 in March 1969. Schweickart later served as the backup commander of the first Skylab crew. He retired from NASA in 1977.

David R. Scott Clifton C. “CC” Williams
Group 3 astronauts David R. Scott, left, and Clifton C. “CC” Williams.

Slayton placed Scott, who held a master’s degree in aeronautics and astronautics, in charge of monitoring the development of guidance and navigation systems. On his first crew assignment, he served as pilot on Gemini VIII, the mission that featured the first docking with an Agena target and the first in-space emergency requiring an immediate return to Earth. Just days after that harrowing flight in March 1966, Scott was named to the backup crew for the first Apollo mission, but later he, McDivitt, and Schweickart were reassigned to the first flight to test the LM in space, the flight that flew as Apollo 9 in March 1969. Scott next served as backup commander of Apollo 12, then as prime commander of Apollo 15. He became the seventh man to walk on the Moon and the first to drive there, using the Lunar Roving Vehicle. After leaving the astronaut corps, he served first as the deputy director and then the director of NASA’s Dryden, now Armstrong, Flight Research Center at Edwards AFB in California’s Mojave Desert. He retired from NASA in 1977.

Williams, the only Marine and lone bachelor of the group (he married in July 1964), oversaw range operations and crew safety. Slayton assigned Williams as the backup pilot for Gemini X, and later he served as the LMP on a backup crew for the first flight of the LM in Earth orbit, along with Charles “Pete” Conrad and fellow classmate Gordon. Tragically, Williams died in the crash of a T-38 Talon aircraft near Tallahassee, Florida, on Oct. 5, 1967. Bean replaced him on Conrad’s crew, that became the Apollo 9 backup crew and ultimately the prime crew for Apollo 12. At Bean’s suggestion, Williams is memorialized on the Apollo 12 crew patch as a fourth star, the other three stars representing the actual flight crew.

Summary of spaceflights by Group 3 astronauts.
Summary of spaceflights by Group 3 astronauts. The boxes with flight names in italics represent astronauts who died before they could undertake the mission.

As a group, The Fourteen tragically had the highest mortality rate of any astronaut class. The surviving 10 astronauts completed a total of 18 flights, five Gemini missions, 12 Apollo missions, and one Skylab mission. Of the group, Collins received the first crew assignment as Gemini VII backup pilot, while Scott made the first spaceflight on Gemini VIII. Bean made the last spaceflight by a Fourteen, as commander of Skylab 3 in 1973, and also the last to receive a crew assignment as the backup commander for the ASTP mission in 1975. Seven of The Fourteen traveled to the Moon, one of them twice, and four walked on its dusty surface. One even drove on it.

Michael Collins, lower left, the first of The Fourteen to receive a crew assignment as backup pilot on Gemini VII David R. Scott, lower left, received the first assignment to a prime crew as Gemini VIII pilot – fellow Fourteen Richard F. Gordon was assigned as his backup Scott awaits launch inside Gemini VIII.
Left: Michael Collins, lower left, the first of The Fourteen to receive a crew assignment as backup pilot on Gemini VII. Middle: David R. Scott, lower left, received the first assignment to a prime crew as Gemini VIII pilot – fellow Fourteen Richard F. Gordon was assigned as his backup. Right: Scott awaits launch inside Gemini VIII.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Former Johnson Director Jefferson Howell July 3, 2025
      Jefferson Davis Howell, Jr., former director of NASA’s Johnson Space Center in Houston, died July 2, in Bee Cave, Texas. He was 85 years old.
      Howell was a champion of the construction of the International Space Station, working on a deadline to complete the orbiting lab by 2004. He oversaw four space shuttle crews delivering equipment and hardware to reach that goal. He also served as director during a pivotal moment for the agency: the loss of STS-107 and the crew of space shuttle Columbia. He made it his personal responsibility to meet with the families, look after them, and attend memorial services, all while keeping the families informed of the accident investigation as it unfolded.
      “Gen. Howell led NASA Johnson through one of the most difficult chapters in our history, following the loss of Columbia and her crew,” said acting associate administrator Vanessa Wyche. “He brought strength and steady direction, guiding the workforce with clarity and compassion. He cared deeply for the people behind the mission and shared his leadership skills generously with the team. We extend our heartfelt condolences to his family and all who knew and loved him.”
      At the time of his selection as director, he was serving as senior vice president with Science Applications International Corporation (SAIC) as the program manager for the safety, reliability, and quality assurance contract at Johnson. Following the accident, he made it his mission to improve the relationship between the civil servant and contractor workforce. He left his position and the agency, in October 2005, shortly after the Return-to-Flight mission of STS-114.
      “General Howell stepped into leadership at Johnson during a pivotal time, as the International Space Station was just beginning to take shape. He led and supported NASA’s successes not only in space but here on the ground — helping to strengthen the center’s culture and offering guidance through both triumph and tragedy,” said Steve Koerner, Johnson Space Center’s acting director. “On behalf of NASA’s Johnson Space Center, we offer our deepest sympathies to his family, friends, and all those who had the privilege of working alongside him. The impact of his legacy will continue to shape Johnson for decades to come.”
      The Victoria, Texas, native was a retired lieutenant general in the U.S. Marine Corps with a decorated military career prior to his service at NASA. He flew more than 300 combat missions in Vietnam and Thailand.
      Howell is survived by his wife Janel and two children. A tree dedication will be held at NASA Johnson’s memorial grove in the coming year.
      -end-
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Since launching in 2023, NASA’s Tropospheric Emissions: Monitoring of Pollution mission, or TEMPO, has been measuring the quality of the air we breathe from 22,000 miles above the ground. June 19 marked the successful completion of TEMPO’s 20-month-long initial prime mission, and based on the quality of measurements to date, the mission has been extended through at least September 2026. The TEMPO mission is NASA’s first to use a spectrometer to gather hourly air quality data continuously over North America during daytime hours. It can see details down to just a few square miles, a significant advancement over previous satellites.
      “NASA satellites have a long history of missions lasting well beyond the primary mission timeline. While TEMPO has completed its primary mission, the life for TEMPO is far from over,” said Laura Judd, research physical scientist and TEMPO science team member at NASA’s Langley Research Center in Hampton, Virginia. “It is a big jump going from once-daily images prior to this mission to hourly data. We are continually learning how to use this data to interpret how emissions change over time and how to track anomalous events, such as smoggy days in cities or the transport of wildfire smoke.” 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      By measuring nitrogen dioxide (NO2) and formaldehyde (HCHO), TEMPO can derive the presence of near-surface ozone. On Aug. 2, 2024 over Houston, TEMPO observed exceptionally high ozone levels in the area. On the left, NO2 builds up in the atmosphere over the city and over the Houston Ship Channel. On the right, formaldehyde levels are seen reaching a peak in the early afternoon. Formaldehyde is largely formed through the oxidation of hydrocarbons, an ingredient of ozone production, such as those that can be emitted by petrochemical facilities found in the Houston Ship Channel. Trent Schindler/NASA's Scientific Visualization Studio When air quality is altered by smog, wildfire smoke, dust, or emissions from vehicle traffic and power plants, TEMPO detects the trace gases that come with those effects. These include nitrogen dioxide, ozone, and formaldehyde in the troposphere, the lowest layer of Earth’s atmosphere.
      “A major breakthrough during the primary mission has been the successful test of data delivery in under three hours with the help of NASA’s Satellite Needs Working Group. This information empowers decision-makers and first responders to issue timely air quality warnings and help the public reduce outdoor exposure during times of higher pollution,” said Hazem Mahmoud, lead data scientist at NASA’s Atmospheric Science Data Center located at Langley Research Center.
      …the substantial demand for TEMPO's data underscores its critical role…
      hazem mahmoud
      NASA Data Scientist
      TEMPO data is archived and distributed freely through the Atmospheric Science Data Center. “The TEMPO mission has set a groundbreaking record as the first mission to surpass two petabytes, or 2 million gigabytes, of data downloads within a single year,” said Mahmoud. “With over 800 unique users, the substantial demand for TEMPO’s data underscores its critical role and the immense value it provides to the scientific community and beyond.” Air quality forecasters, atmospheric scientists, and health researchers make up the bulk of the data users so far.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On April 14, strong winds triggered the formation of a huge dust storm in the U.S. central plains and fueled the ignition of grassland fires in Oklahoma. On the left, the NO2 plumes originating from the grassland fires are tracked hour-by-hour by TEMPO. Smoke can be discerned from dust as a source since dust is not a source of NO2. The animation on the right shows the ultraviolet (UV) aerosol index, which indicates particulates in the atmosphere that absorb UV light, such as dust and smoke. Trent Schindler/NASA's Scientific Visualization Studio The TEMPO mission is a collaboration between NASA and the Smithsonian Astrophysical Observatory, whose Center for Astrophysics Harvard & Smithsonian oversees daily operations of the TEMPO instrument and produces data products through its Instrument Operations Center.
      Datasets from TEMPO will be expanded through collaborations with partner agencies like the National Oceanic and Atmospheric Administration (NOAA), which is deriving aerosol products that can distinguish between smoke and dust particles and offer insights into their altitude and concentration.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On May 5, TEMPO measured NO2 emissions over the Twin Cities in the center of Minnesota during morning rush hour. The NO2 increases seen mid-day through the early evening hours are illustrated by the red and black shaded areas at the Red River Valley along the North Dakota state line. These levels are driven by emissions from the soils in agriculturally rich areas. Agricultural soil emissions are influenced by environmental factors like temperature and moisture as well as fertilizer application. Small fires and enhancements from mining activities can also be seen popping up across the region through the afternoon.Trent Schindler/NASA's Scientific Visualization Studio “These datasets are being used to inform the public of rush-hour pollution, air quality alerts, and the movement of smoke from forest fires,” said Xiong Liu, TEMPO’s principal investigator at the Center for Astrophysics Harvard & Smithsonian. “The library will soon grow with the important addition of aerosol products. Users will be able to use these expanded TEMPO products for air quality monitoring, improving forecast models, deriving pollutant amounts in emissions and many other science applications.”
      The TEMPO mission detects and highlights movement of smoke originating from fires burning in Manitoba on June 2. Seen in purple hues are observations made by TEMPO in the ultraviolet spectrum compared to Advanced Baseline Imagers (ABIs) on NOAA’s GOES-R series of weather satellites that do not have the needed spectral coverage. The NOAA GOES-R data paired with NASA’s TEMPO data enhance state and local agencies’ ability to provide near-real-time smoke and dust impacts in local air quality forecasts.NOAA/NESDIS/Center for Satellite Applications and Research “The TEMPO data validation has truly been a community effort with over 20 agencies at the federal and international level, as well as a community of over 200 scientists at research and academic institutions,” Judd added. “I look forward to seeing how TEMPO data will help close knowledge gaps about the timing, sources, and evolution of air pollution from this unprecedented space-based view.”
      An agency review will take place in the fall to assess TEMPO’s achievements and extended mission goals and identify lessons learned that can be applied to future missions.
      The TEMPO mission is part of NASA’s Earth Venture Instrument program, which includes small, targeted science investigations designed to complement NASA’s larger research missions. The instrument also forms part of a virtual constellation of air quality monitors for the Northern Hemisphere which includes South Korea’s Geostationary Environment Monitoring Spectrometer and ESA’s (European Space Agency) Sentinel-4 satellite. TEMPO was built by BAE Systems Inc., Space & Mission Systems (formerly Ball Aerospace). It flies onboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Instrument Operations Center and the Science Data Processing Center are operated by the Smithsonian Astrophysical Observatory, part of the Center for Astrophysics | Harvard & Smithsonian in Cambridge.


      For more information about the TEMPO instrument and mission, visit:
      https://science.nasa.gov/mission/tempo/

      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jul 03, 2025 LocationNASA Langley Research Center Related Terms
      Tropospheric Emissions: Monitoring of Pollution (TEMPO) Earth Earth Science Earth Science Division General Langley Research Center Missions Science Mission Directorate Explore More
      2 min read Hubble Observations Give “Missing” Globular Cluster Time to Shine
      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope…
      Article 15 minutes ago 5 min read NASA Advances Pressure Sensitive Paint Research Capability
      Article 1 hour ago 5 min read How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Swept Wing Flow Test model, known as SWiFT, with pressure sensitive paint applied, sports a pink glow under ultraviolet lights while tested during 2023 in a NASA wind tunnel at Langley Research Center in Virginia.NASA / Dave Bowman Many of us grew up using paint-by-number sets to create beautiful color pictures.
      For years now, NASA engineers studying aircraft and rocket designs in wind tunnels have flipped that childhood pastime, using computers to generate images from “numbers-by-paint” – pressure sensitive paint (PSP), that is.
      Now, advances in the use of high-speed cameras, supercomputers, and even more sensitive PSP have made this numbers-by-paint process 10,000 times faster while creating engineering visuals with 1,000 times higher resolution.
      So, what’s the big difference exactly between the “old” capability in use at NASA for more than a decade and the “new?”
      “The key is found by adding a single word in front of PSP, namely ‘unsteady’ pressure sensitive paint, or uPSP,” said E. Lara Lash, an aerospace engineer from NASA’s Ames Research Center in California’s Silicon Valley.
      With PSP, NASA researchers study the large-scale effects of relatively smooth air flowing over the wings and body of aircraft. Now with uPSP, they are able to see in finer detail what happens when more turbulent air is present – faster and better than ever before.
      In some cases with the new capability, researchers can get their hands on the wind tunnel data they’re looking for within 20 minutes. That’s quick enough to allow engineers to adjust their testing in real time.
      Usually, researchers record wind tunnel data and then take it back to their labs to decipher days or weeks later. If they find they need more data, it can take additional weeks or even months to wait in line for another turn in the wind tunnel.
      “The result of these improvements provides a data product that is immediately useful to aerodynamic engineers, structural engineers, or engineers from other disciplines,” Lash said.
      Robert Pearce, NASA’s associate administrator for aeronautics, who recently saw a demonstration of uPSP-generated data displayed at Ames, hailed the new tool as a national asset that will be available to researchers all over the country.
      “It’s a unique NASA innovation that isn’t offered anywhere else,” Pearce said. “It will help us maintain NASA’s world leadership in wind tunnel capabilities.”
      A technician sprays unsteady pressure sensitive paint onto the surface of a small model of the Space Launch System in preparation for testing in a NASA wind tunnel.NASA / Dave Bowman How it Works
      With both PSP and uPSP, a unique paint is applied to scale models of aircraft or rockets, which are mounted in wind tunnels equipped with specific types of lights and cameras.
      When illuminated during tests, the paint’s color brightness changes depending on the levels of pressure the model experiences as currents of air rush by. Darker shades mean higher pressure; lighter shades mean lower pressure.
      Cameras capture the brightness intensity and a supercomputer turns that information into a set of numbers representing pressure values, which are made available to engineers to study and glean what truths they can about the vehicle design’s structural integrity.
      “Aerodynamic forces can vibrate different parts of the vehicle to different degrees,” Lash said. “Vibrations could damage what the vehicle is carrying or can even lead to the vehicle tearing itself apart. The data we get through this process can help us prevent that.”
      Traditionally, pressure readings are taken using sensors connected to little plastic tubes strung through a model’s interior and poking up through small holes in key places, such as along the surface of a wing or the fuselage. 
      Each point provides a single pressure reading. Engineers must use mathematical models to estimate the pressure values between the individual sensors.
      With PSP, there is no need to estimate the numbers. Because the paint covers the entire model, its brightness as seen by the cameras reveals the pressure values over the whole surface.
      A four-percent scale model of the Space Launch System rocket is tested in 2017 using unsteady Pressure Sensitive Paint inside the 11-foot by 11-foot Unitary Plan Wind Tunnel at NASA’s Ames Research Center in California.NASA / Dominic Hart Making it Better
      The introduction, testing, and availability of uPSP is the result of a successful five-year-long effort, begun in 2019, in which researchers challenged themselves to significantly improve the PSP’s capability with its associated cameras and computers.
      The NASA team’s desire was to develop and demonstrate a better process of acquiring, processing, and visualizing data using a properly equipped wind tunnel and supercomputer, then make the tool available at NASA wind tunnels across the country.
      The focus during a capability challenge was on NASA’s Unitary Plan Facility’s 11-foot transonic wind tunnel, which the team connected to the nearby NASA Advanced Supercomputing Facility, both located at Ames.
      Inside the wind tunnel, a scale model of NASA’s Space Launch System rocket served as the primary test subject during the challenge period.
      Now that the agency has completed its Artemis I uncrewed lunar flight test mission, researchers can match the flight-recorded data with the wind tunnel data to see how well reality and predictions compare.
      With the capability challenge officially completed at the end of 2024, the uPSP team is planning to deploy it to other wind tunnels and engage with potential users with interests in aeronautics or spaceflight.
      “This is a NASA capability that we have, not only for use within the agency, but one that we can offer industry, academia, and other government agencies to come in and do research using these new tools,” Lash said.
      NASA’s Aerosciences Evaluation and Test Capabilities portfolio office, an organization managed under the agency’s Aeronautics Research Mission Directorate, oversaw the development of the uPSP capability.
      Watch this uPSP Video
      About the Author
      Jim Banke
      Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      6 min read By Air and by Sea: Validating NASA’s PACE Ocean Color Instrument
      Article 1 week ago 3 min read NASA Intern Took Career from Car Engines to Cockpits
      Article 1 week ago 4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 03, 2025 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Aerosciences Evaluation Test Capabilities Ames Research Center Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies
      View the full article
    • By NASA
      NASA Astronauts Send Fourth of July Wishes From the International Space Station
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
  • Check out these Videos

×
×
  • Create New...