Jump to content

NASA Prepares Artemis II Moon Rocket Core Stage for Final Assembly Phase


Recommended Posts

  • Publishers
Posted
These photos and videos show how technicians at NASA’s Michoud Assembly Facility in New Orleans installed the third and fourth RS-25 engines onto the core stage for the agency’s SLS (Space Launch System) rocket that will help power NASA’s first crewed Artemis mission to the Moon.   Technicians added the first engine to the SLS core stage Sept. 11. The second engine was installed onto the stage Sept. 15 with the third and fourth engines following Sept. 19 and Sept. 20. Engineers consider the engines to be “soft” mated to the rocket stage. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, will now focus efforts on the complex tax of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure.   NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.
All four RS-25 engines have been installed onto the SLS (Space Launch System) core stage for NASA’s Artemis II mission. The installation of the engines signals the core stage is nearly finished with assembly and will soon be ready for shipment to NASA’s Kennedy Space Center in Florida. During launch, the rocket’s engines provide more than two million pounds of combined thrust.
Credits: NASA

By Megan Carter

NASA and its partners have fully secured the four RS-25 engines onto the core stage of the agency’s SLS (Space Launch System) rocket for the Artemis II flight test. The core stage, and its engines, is the backbone of the SLS mega rocket that will power the flight test, the first crewed mission to the Moon under Artemis.

Engineers have begun final integration testing at NASA’s Michoud Assembly Facility in New Orleans, in preparation for acceptance ahead of shipment of the stage to Kennedy Space Center in Florida in the coming months.

“NASA integrated many lessons learned from the first-time build and assembly of the SLS core stage for Artemis I to increase efficiencies during manufacturing and cross-team collaboration with our partners for Artemis II. NASA teams in New Orleans remain focused on assembling and preparing the SLS rocket’s liquid-fueled stage to support the flight.”

Julie Bassler

Julie Bassler

Manager of the Stages Office for the SLS Program

“NASA integrated many lessons learned from the first-time build and assembly of the SLS core stage for Artemis I to increase efficiencies during manufacturing and cross-team collaboration with our partners for Artemis II,” said Julie Bassler, manager of the Stages Office for the SLS Program at the agency’s Marshall Space Flight Center in Huntsville, Alabama, where the program is managed. “NASA teams in New Orleans remain focused on assembling and preparing the SLS rocket’s liquid-fueled stage to support the flight.”

The 212-foot-tall core stage includes two massive liquid propellant tanks and four RS-25 engines at its base. For Artemis II, the core stage and its engines act as the powerhouse of the rocket, providing more than two million pounds of thrust for the first eight minutes of flight to send the crew of four astronauts inside NASA’s Orion spacecraft on an approximately 10-day mission around the Moon.

NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, secured the engines to the maze of propulsion and avionics systems within the core stage Oct. 6. In the coming weeks, engineers will perform testing on the entire stage and its avionics and electrical systems, which act as the “brains” of the rocket to help control it during flight.

Once testing of the stage is complete and the hardware passes its acceptance review, the core stage will be readied for shipping to Kennedy via the agency’s Pegasus barge, based at Michoud.

As teams prepare the core stage for Artemis II, rocket hardware is also under construction on our factory floor for Artemis III, IV, and V that will help send the future Artemis astronauts to the lunar South Pole.

The engines were first soft mated one by one onto the stage beginning in early September. The last RS-25 engine was structurally installed onto the stage Sept. 20. Installing the four engines is a multi-step, collaborative process for NASA, Boeing, and Aerojet Rocketdyne.

Following the initial structural connections of the individual engines, securing and outfitting all four engines to the stage is the lengthiest part of the engine assembly process and includes securing the thrust vector control actuators, ancillary interfaces, and remaining bolts before multiple tests and checkouts.

All major hardware elements for the SLS rocket that will launch Artemis II are either complete or in progress. The major components for the rocket’s two solid rocket boosters are at Kennedy. The rocket’s two adapters, produced at Marshall, along with the rocket’s upper stage, currently at lead contractor United Launch Alliance’s facility in Florida near Kennedy, will be prepared for shipment in the spring.

NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      Artist’s concept.Credit: NASA NASA announced Monday its latest plans to team up with a streaming service to bring space a little closer to home. Starting this summer, NASA+ live programming will be available on Netflix.
      Audiences now will have another option to stream rocket launches, astronaut spacewalks, mission coverage, and breathtaking live views of Earth from the International Space Station.
      “The National Aeronautics and Space Act of 1958 calls on us to share our story of space exploration with the broadest possible audience,” said Rebecca Sirmons, general manager of NASA+ at the agency’s headquarters in Washington. “Together, we’re committed to a Golden Age of Innovation and Exploration – inspiring new generations – right from the comfort of their couch or in the palm of their hand from their phone.”
      Through this partnership, NASA’s work in science and exploration will become even more accessible, allowing the agency to increase engagement with and inspire a global audience in a modern media landscape, where Netflix reaches a global audience of more than 700 million people.
      The agency’s broader efforts include connecting with as many people as possible through video, audio, social media, and live events. The goal is simple: to bring the excitement of the agency’s discoveries, inventions, and space exploration to people, wherever they are.
      NASA+ remains available for free, with no ads, through the NASA app and on the agency’s website.
      Additional programming details and schedules will be announced ahead of launch.
      For more about NASA’s missions, visit:
      https://www.nasa.gov
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Brand Partnerships NASA+ View the full article
    • By NASA
      2 Min Read NASA Announces Winners of 2025 Human Lander Challenge
      NASA’s Human Lander Challenge marked its second year on June 26, awarding $18,000 in prize money to three university teams for their solutions for long-duration cryogenic, or super chilled, liquid storage and transfer systems for spaceflight.
      Building on the crewed Artemis II flight test, NASA’s Artemis III mission will send astronauts to explore the lunar South Pole region with a human landing system and advanced spacesuits, preparing humanity to ultimately go to Mars. In-space propulsion systems that use cryogenic liquids as propellants must stay extremely cold to remain in a liquid state and are critical to mission success. The Artemis mission architecture will need these systems to function for several weeks or even months.
      Students and advisors with the 12 finalist teams for the 2025 Human Lander Challenge competed in Huntsville, Alabama, near the agency’s Marshall Space Flight Center between June 24-26. NASA/Charles Beason NASA announced Embry-Riddle Aeronautical University, Prescott as the overall winner and recipient of the $10,000 top prize award. Old Dominion University won second place and a $5,000 award, followed by Massachusetts Institute of Technology in third place and a $3,000 award.
      Before the winners were announced, 12 finalist teams selected in April gave their presentations to a panel of NASA and industry judges as part of the final competition in Huntsville. As part of the 2025 Human Lander Challenge, university teams developed systems-level solutions that could be used within the next 3-5 years for Artemis.
      NASA selected Embry-Riddle Aeronautical University, Prescott as the overall winner of NASA’s 2025 Human Lander Challenge Forum June 26. Lisa Watson-Morgan, manager of NASA’s Human Landing System Program, presented the awards at the ceremony. NASA/Charles Beason “Today’s Golden Age of Innovation and Exploration students are tomorrow’s mission designers, systems engineers, and explorers,” said Juan Valenzuela, main propulsion systems and cryogenic fluid management subsystems lead for NASA’s Human Landing System Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The Human Lander Challenge concepts at this year’s forum demonstrate the ingenuity, passion, and determination NASA and industry need to help solve long-duration cryogenic storage challenges to advance human exploration to deep space.”
      The challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 27, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Lander Challenge Artemis General Human Landing System Program Humans in Space Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 1 week ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Human Landing System
      Space Launch System (SLS)
      Marshall Space Flight Center manages the Space Launch System (SLS), an integrated super heavy lift launch platform enabling a new…
      Humans In Space
      Orion Capsule
      NASA’s Orion spacecraft is built to take humans farther than they’ve ever gone before. Orion will serve as the exploration…
      View the full article
  • Check out these Videos

×
×
  • Create New...