Jump to content

NASA’s Psyche Spacecraft, Optical Comms Demo En Route to Asteroid


Recommended Posts

  • Publishers
Posted
53255487909-db987b77e4-k.jpg?w=2048
A SpaceX Falcon Heavy rocket with the Psyche spacecraft onboard is launched from Launch Complex 39A, Friday, Oct. 13, 2023, at NASA’s Kennedy Space Center in Florida. NASA’s Psyche spacecraft will travel to a metal-rich asteroid by the same name orbiting the Sun between Mars and Jupiter to study it’s composition. The spacecraft also carries the agency’s Deep Space Optical Communications technology demonstration, which will test laser communications beyond the Moon.
NASA/Aubrey Gemignani

NASA’s Psyche spacecraft is on its voyage to an asteroid of the same name, a metal-rich world that could tell us more about the formation of rocky planets. Psyche successfully launched 10:19 a.m. EDT Friday aboard a SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida.

Integrated onto the spacecraft is the agency’s Deep Space Optical Communications technology demonstration, a test of deep space laser communications that could support future exploration missions by providing more bandwidth to transmit data than traditional radio frequency communications.

“Congratulations to the Psyche team on a successful launch, the first journey to a metal-rich asteroid,” said NASA Administrator Bill Nelson. “The Psyche mission could provide humanity with new information about planet formation while testing technology that can be used on future NASA missions. As Asteroid Autumn continues, so does NASA’s commitment to exploring the unknown and inspiring the world through discovery.”

Less than five minutes after liftoff, once the rocket’s second stage climbed to a high-enough altitude, the fairings separated from the rocket and returned to Earth. About an hour after launch, the spacecraft separated from the rocket, and ground controllers waited to acquire a signal from the spacecraft.

Shortly after, the Psyche spacecraft commanded itself into a planned safe mode, in which it completes only minimal engineering activities while awaiting further commands from mission controllers on Earth. Psyche established two-way communication at 11:50 a.m. EDT with NASA’s Deep Space Network complex in Canberra, Australia. Initial telemetry reports show the spacecraft is in good health.

“I am excited to see the treasure trove of science Psyche will unlock as NASA’s first mission to a metal world,” said Nicola Fox, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “By studying asteroid Psyche, we hope to better understand our universe and our place in it, especially regarding the mysterious and impossible-to-reach metal core of our own home planet, Earth.”

By August 2029, the spacecraft will begin to orbit the 173-mile-wide (279-kilometer-wide) asteroid – the only metal-class asteroid ever to be explored. Because of Psyche’s high iron-nickel metal content, scientists think it may be the partial core of a planetesimal, a building block of an early planet. The goal is a 26-month science investigation.

“We said ‘goodbye’ to our spacecraft, the center of so many work lives for so many years – thousands of people and a decade,” said Lindy Elkins-Tanton, Psyche principal investigator at Arizona State University in Tempe. “But it’s really not a finish line; it’s a starting line for the next marathon. Our spacecraft is off to meet our asteroid, and we’ll fill another gap in our knowledge – and color in another kind of world in our solar system.”

For its six-year, 2.2-billion-mile (3.6-billion-kilometer) trip to the main asteroid belt between Mars and Jupiter, Psyche relies on solar electric propulsion. The efficient propulsion system works by expelling charged atoms, or ions, of the neutral gas xenon to create a thrust that gently propels the spacecraft. Along the way, the spacecraft will use Mars’ gravity as a slingshot to speed it along on its journey.

“I’m so proud of the Psyche team, who overcame many challenges on their way to this exciting day,” said Laurie Leshin, the director of NASA’s Jet Propulsion Laboratory (JPL) in Southern California. “Now the real fun begins as we race toward asteroid Psyche to unlock the secrets of how planets form and evolve.” 

The first 100 days of the mission are a commissioning phase, called the initial checkout period, to make sure all flight systems are healthy. Key to the checkout is ensuring that the electric thrusters are ready to begin continuously firing over long stretches of the trajectory.

Active checkout of the science instruments – the magnetometer, the gamma-ray and neutron spectrometer, and the multispectral imager – starts about six weeks from now.  During this period, the imager will take its first images for calibration purposes, targeting standard stars and a star cluster at a variety of exposures, with several different filters. Then the Psyche team will activate an automatic feed of publicly viewable raw images online for the duration of the mission.

The first opportunity to power on the optical communications technology demonstration is expected in about three weeks, when Psyche would be roughly 4.7 million miles (7.5 million kilometers) from Earth. This will be the agency’s first test beyond the Moon of high-data-rate optical, or laser, communications. While the transceiver is hosted by Psyche, the tech demo will not relay Psyche mission data.

“Launching with Psyche is an ideal platform to demonstrate NASA’s optical communications goal to get high-bandwidth data into deep space,” said Dr. Prasun Desai, acting associate administrator, Space Technology Mission Directorate (STMD) at NASA Headquarters. “It’s exciting to know that, in a few short weeks, Deep Space Optical Communications will begin sending data back to Earth to test this critical capability for the future of space exploration. The insights we learn will help us advance these innovative new technologies and, ultimately, pursue bolder goals in space.”

More Mission Information

Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Space in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

JPL manages the Deep Space Optical Communications project for the Technology Demonstration Missions program within STMD and the Space Communications and Navigation Program within the Space Operations Mission Directorate.

NASA’s Launch Services Program, based at Kennedy Space Center, is responsible for the insight and approval of the launch vehicle and manages the launch service for the Psyche mission. NASA certified the SpaceX Falcon Heavy rocket for use with the agency’s most complex and highest priority missions in early 2023 at the conclusion of a 2.5-year effort.

Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

For more information about NASA’s Psyche mission go to:

https://www.nasa.gov/psyche

-end-

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-6215
gretchen.p.mccartney@jpl.nasa.gov 

Alise Fisher / Alana Johnson
Headquarters, Washington
202-358-2546 / 202-358-1501
alise.m.fisher@nasa.gov / alana.r.johnson@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Artemis I SLS (Space Launch System) rocket and Orion spacecraft is pictured in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida before rollout to launch pad 39B, in March 2022.Credit: NASA/Frank Michaux Media are invited to see NASA’s fully assembled Artemis II SLS (Space Launch System) rocket and Orion spacecraft in mid-October before its crewed test flight around the Moon next year.  
      The event at NASA’s Kennedy Space Center in Florida will showcase hardware for the Artemis II lunar mission, which will test capabilities needed for deep space exploration. NASA and industry subject matter experts will be available for interviews.
      Attendance is open to U.S. citizens and international media. Media accreditation deadlines are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Monday, Sept. 22. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Monday, Sept. 29. Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the mid-October activities when they are determined. NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact the NASA Kennedy newsroom at: 321-867-2468.
      Prior to the media event, the Orion spacecraft will transition from the Launch Abort System Facility to the Vehicle Assembly Building at NASA Kennedy, where it will be placed on top of the SLS rocket. The fully stacked rocket will then undergo complete integrated testing and final hardware closeouts ahead of rolling the rocket to Launch Pad 39B for launch. During this effort, technicians will conduct end-to-end communications checkouts, and the crew will practice day of launch procedures during their countdown demonstration test.
      Artemis II will send NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on an approximately 10-day journey around the Moon and back. As part of a Golden Age of innovation and exploration, Artemis will pave the way for new U.S.-crewed missions on the lunar surface ahead in preparation toward the first crewed mission to Mars.

      To learn more about the Artemis II mission, visit:
      https://www.nasa.gov/mission/artemis-ii
      -end-
      Rachel Kraft / Lauren Low
      Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov / lauren.e.low@nasa.gov  
      Tiffany Fairley
      Kennedy Space Center, Fla.
      321-867-2468
      tiffany.l.fairley@nasa.gov
      Share
      Details
      Last Updated Sep 10, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Artemis Orion Multi-Purpose Crew Vehicle Space Launch System (SLS) View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Psyche captured images of Earth and our Moon from about 180 million miles (290 kilometers) away in July 2025, as it calibrated its imager instrument. When choosing targets for the imager testing, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does.NASA/JPL-Caltech/ASU Headed for a metal-rich asteroid of the same name, the Psyche spacecraft successfully calibrated its cameras by looking homeward.
      On schedule for its 2029 arrival at the asteroid Psyche, NASA’s Psyche spacecraft recently looked back toward home and captured images of Earth and our Moon from about 180 million miles (290 million kilometers) away. The images were obtained during one of the mission team’s periodic checkouts of the spacecraft’s science instruments.
      On July 20 and July 23, the spacecraft’s twin cameras captured multiple long-exposure (up to 10-second) pictures of the two bodies, which appear as dots sparkling with reflected sunlight amid a starfield in the constellation Aries.
      Learn more about the multispectral imager aboard Psyche that will use a pair of identical cameras with filters and telescopic lenses to photograph the surface of the asteroid in different wavelengths of light. NASA/JPL-Caltech/ASU The Psyche multispectral imager instrument comprises a pair of identical cameras equipped with filters and telescopic lenses to photograph the asteroid Psyche’s surface in different wavelengths of light. The color and shape of a planetary body’s spectrum can reveal details about what it’s made of. The Moon and the giant asteroid Vesta, for example, have similar kinds of “bumps and wiggles” in their spectra that scientists could potentially also detect at Psyche. Members of the mission’s science team are interested in Psyche because it will help them better understand the formation of rocky planets with metallic cores, including Earth.
      When choosing targets for the imager testing and calibration, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does. They also look at objects that have a spectrum they’re familiar with, so they can compare previous telescopic or spacecraft data from those objects with what Psyche’s instruments observe. Earlier this year, Psyche turned its lenses toward Jupiter and Mars for calibration — each has a spectrum more reddish than the bluer tones of Earth. That checkout also proved a success.
      The Psyche spacecraft is taking a spiral path around the solar system in order to get a boost from a Mars gravity assist in 2026. It will arrive at the asteroid Psyche in 2029. NASA/JPL-Caltech To determine whether the imager’s performance is changing, scientists also compare data from the different tests. That way, when the spacecraft slips into orbit around Psyche, scientists can be sure that the instrument behaves as expected.
      “After this, we may look at Saturn or Vesta to help us continue to test the imagers,” said Jim Bell, the Psyche imager instrument lead at Arizona State University in Tempe. “We’re sort of collecting solar system ‘trading cards’ from these different bodies and running them through our calibration pipeline to make sure we’re getting the right answers.”
      Strong and Sturdy
      The imager wasn’t the only instrument that got a successful checkout in late July: The mission team also put the spacecraft’s magnetometer and the gamma-ray and neutron spectrometer through a gamut of tests — something they do every six months.
      “We are up and running, and everything is working well,” said Bob Mase, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “We’re on target to fly by Mars in May 2026, and we are accomplishing all of our planned activities for cruise.”
      That flyby is the spacecraft’s next big milestone, when it will use the Red Planet’s gravity as a slingshot to help the spacecraft get to the asteroid Psyche. That will mark Psyche’s first of two planned loops around the solar system and 1 billion miles (1.6 billion kilometers) since launching from NASA’s Kennedy Space Center in October 2023.
      More About Psyche
      The Psyche mission is led by ASU. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator.A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. ASU leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.
      Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
      For more information about NASA’s Psyche mission go to:
      http://www.science.nasa.gov/mission/psyche
      Check out the Psyche spacecraft’s trajectory in 3D News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-106
      Share
      Details
      Last Updated Aug 19, 2025 Related Terms
      Psyche Mission Asteroids Jet Propulsion Laboratory The Solar System Explore More
      3 min read Summer Triangle Corner: Altair
      Altair is the last stop on our trip around the Summer Triangle! The last star…
      Article 4 days ago 5 min read NASA’s Apollo Samples, LRO Help Scientists Forecast Moonquakes
      Moonquakes pose little risk to astronauts during a mission lasting just a few days. But…
      Article 5 days ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      ESA’s Hera mission has captured images of asteroids (1126) Otero and (18805) Kellyday. Though distant and faint, the early observations serve as both a successful instrument test and a demonstration of agile spacecraft operations that could prove useful for planetary defence.
      Hera is currently travelling through space on its way to a binary asteroid system. In 2022, NASA’s DART spacecraft impacted the asteroid Dimorphos, changing its orbit around the larger asteroid Didymos. Now, Hera is returning to the system to help turn asteroid deflection into a reliable technique for planetary defence.
      View the full article
    • By NASA
      Software designed to give spacecraft more autonomy could support a future where swarms of satellites navigate and complete scientific objectives with limited human intervention.
      Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. Credit: NASA/Brandon Torres Navarrete Astronauts living and working on the Moon and Mars will rely on satellites to provide services like navigation, weather, and communications relays. While managing complex missions, automating satellite communications will allow explorers to focus on critical tasks instead of manually operating satellites.  
      Long duration space missions will require teaming between systems on Earth and other planets. Satellites orbiting the Moon, Mars, or other distant areas face communications delays with ground operators which could limit the efficiency of their missions.  
      The solution lies within the Distributed Spacecraft Autonomy (DSA) project, led by NASA’s Ames Research Center in California’s Silicon Valley, which tests how shared autonomy across distributed spacecraft missions makes spacecraft swarms more capable of self-sufficient research and maintenance by making decisions and adapting to changes with less human intervention. 
      Adding autonomy to satellites makes them capable of providing services without waiting for commands from ground operators. Distributing the autonomy across multiple satellites, operating like a swarm, gives the spacecraft a “shared brain” to accomplish goals they couldn’t achieve alone. 
      The DSA software, built by NASA researchers, provides the swarm with a task list, and shares each spacecraft’s distinct perspective – what it can observe, what its priorities are – and integrates those perspectives into the best plan of action for the whole swarm. That plan is supported by decision trees and mathematical models that help the swarm decide what action to take after a command is completed, how to respond to a change, or address a problem. 
      Sharing the Workload
      The first in-space demonstration of DSA began onboard the Starling spacecraft swarm, a group of four small satellites, demonstrating various swarm technologies. Operating since July 2023, the Starling mission continues providing a testing and validation platform for autonomous swarm operations. The swarm first used DSA to optimize scientific observations, deciding what to observe without pre-programmed instructions. These autonomous observations led to measurements that could have been missed if an operator had to individually instruct each satellite. 
      The Starling swarm measured the electron content of plasma between each spacecraft and GPS satellites to capture rapidly changing phenomena in Earth’s ionosphere – where Earth’s atmosphere meets space. The DSA software allowed the swarm to independently decide what to study and how to spread the workload across the four spacecraft. 
      Because each Starling spacecraft operates as an independent member within the swarm, if one swarm member was unable to accomplish its work, the other three swarm members could react and complete the mission’s goals. 
      The Starling 1.0 demonstration achieved several firsts, including the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. These achievements laid the groundwork for Starling 1.5+, an ongoing continuation of the satellite swarm’s mission using DSA.  
      Advanced testing of DSA onboard Starling shows that distributed autonomy in spacecraft swarms can improve efficiencies while reducing the workload on human operators.Credit: NASA/Daniel Rutter A Helping Hand in Orbit 
      After DSA’s successful demonstration on Starling 1.0, the team began exploring additional opportunities to use the software to support satellite swarm health and efficiency. Continued testing of DSA on Starling’s extended mission included PLEXIL (Plan Execution Interchange Language), a NASA-developed programming language designed for reliable and flexible automation of complex spacecraft operations. 
      Onboard Starling, the PLEXIL application demonstrated autonomous maintenance, allowing the swarm to manage normal spacecraft operations, correct issues, or distribute software updates across individual spacecraft.  
      Enhanced autonomy makes swarm operation in deep space feasible – instead of requiring spacecraft to communicate back and forth between their distant location and Earth, which can take minutes or hours depending on distance, the PLEXIL-enabled DSA software gives the swarm the ability to make decisions collaboratively to optimize their mission and reduce workloads. 
      Simulated Lunar Swarming 
      To understand the scalability of DSA, the team used ground-based flight computers to simulate a lunar swarm of virtual small spacecraft. The computers simulated a swarm that provides position, navigation, and timing services on the Moon, similar to GPS services on Earth, which rely on a network of satellites to pinpoint locations. 
      The DSA team ran nearly one hundred tests over two years, demonstrating swarms of different sizes at high and low lunar orbits. The lessons learned from those early tests laid the groundwork for additional scalability studies. The second round of testing, set to begin in 2026, will demonstrate even larger swarms, using flight computers that could later go into orbit with DSA software onboard. 
      The Future of Spacecraft Swarms 
      Orbital and simulated tests of DSA are a launchpad to increased use of distributed autonomy across spacecraft swarms. Developing and proving these technologies increases efficiency, decreases costs, and enhances NASA’s capabilities opening the door to autonomous spacecraft swarms supporting missions to the Moon, Mars, and beyond.  
      Milestones:
      October 2018: DSA project development begins. April 2020: Lunar position, navigation, and timing (LPNT) simulation demonstration development begins. July 2023: DSA launches onboard the Starling spacecraft swarm. March 2024: DSA experiments onboard Starling reach the necessary criteria for success. July 2024: DSA software development begins for the Starling 1.5+ mission extension. September 2024: LPNT simulation demonstration concludes successfully. October 2024: DSA’s extended mission as part of Starling 1.5+ begins. Partners:
      NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provided funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project.  
      Learn More:
      Satellite Swarms for Science ‘Grow up’ at NASA Ames (NASA Story, June 2023) NASA’s Starling Mission Sending Swarm of Satellites into Orbit (NASA Story, July 2023) Swarming for Success: Starling Completes Primary Mission (NASA Story, May 2024) NASA Demonstrates Software ‘Brains’ Shared Across Satellite Swarms (NASA Story, February 2025) For researchers:
      Distributed Spacecraft Autonomy Mission Page Distributed Spacecraft Autonomy TechPort Project Page Starling Mission Page For media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By NASA
      Before astronauts venture around the Moon on Artemis II, the agency’s first crewed mission to the Moon since Apollo, Mark Cavanaugh is helping make sure the Orion spacecraft is safe and space-ready for the journey ahead.  
      As an Orion integration lead at NASA’s Johnson Space Center in Houston, he ensures the spacecraft’s critical systems— in both the U.S.-built crew module and European-built service module—come together safely and seamlessly. 
      Mark Cavanaugh stands in front of a mockup of the Orion spacecraft inside the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz With nearly a decade of experience at NASA, Cavanaugh currently works within the Orion Crew and Service Module Office at Johnson. He oversees the technical integration of the European Service Module, which provides power, propulsion, and life support to Orion during Artemis missions to the Moon. His work includes aligning and verifying essential systems to keeping the crew alive, including oxygen, nitrogen, water storage, temperature regulation, and spacecraft structures. 
      In addition to his integration work, Cavanaugh is an Orion Mission Evaluation Room (MER) manager. The MER is the engineering nerve center during Artemis flights, responsible for real-time monitoring of the Orion spacecraft and real-time decision-making. From prelaunch to splashdown, Cavanaugh will lead a team of engineers who track vehicle health and status, troubleshoot anomalies, and communicate directly with the flight director to ensure the mission remains safe and on track. 
      Mark Cavanaugh supports an Artemis I launch attempt from the Passive Thermal Control System console on Aug. 29, 2022, in the Orion Mission Evaluation Room at NASA’s Johnson Space Center.NASA/Josh Valcarcel Cavanaugh’s passion for space exploration began early. “I’ve wanted to be an aerospace engineer since I was six years old,” he said. “My uncle, who is also an aerospace engineer, used to take me to wind tunnel tests and flight museums as a kid.” 
      That passion only deepened after a fifth-grade trip from Philadelphia to Houston with his grandfather. “My dream of working at NASA Johnson started when I visited the center for the first time,” he said. “Going from being a fifth grader riding the tram on the tour to contributing to the great work done at Johnson has been truly incredible.” 
      Turning that childhood dream into reality did not come with a straight path. Cavanaugh graduated from Pennsylvania State University in 2011, the same year NASA’s Space Shuttle Program ended. With jobs in the space industry in short supply, he took a position with Boeing in Houston, working on the International Space Station’s Passive Thermal Control System. He later supported thermal teams for the Artemis Moon rocket called the Space Launch System, and the Starliner spacecraft that flew astronauts Butch Wilmore and Suni Williams during their Boeing Crew Flight Test mission, before a mentor flagged a NASA job posting that turned out to be the perfect fit. 
      He joined NASA as the deputy system manager for Orion’s Passive Thermal Control System, eventually stepping into his current leadership role on the broader Orion integration team. “I’ve been very lucky to work with some of the best and most supportive teammates you can imagine,” he said. 
      Mark Cavanaugh with his mother, Jennifer, in front of the Artemis I Orion spacecraft following the thermal vacuum test at the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Cavanaugh says collaboration and empathy were key to solving challenges along the way. “I’ve learned to look at things from the other person’s perspective,” he said. “We’re all working toward the same incredible goal, even if we don’t always agree. That mindset helps keep things constructive and prevents misunderstandings.” 
      He also emphasizes the importance of creative problem-solving. “For me, overcoming technical challenges comes down to seeking different perspectives, questioning assumptions, and not being afraid to try something new—even if it sounds a little ridiculous at first.” 
      Mark Cavanaugh riding his motorcycle on the Circuit of the Americas track in Austin, Texas. Outside of work, Cavanaugh fuels his love of speed and precision by riding one of his three motorcycles. He has even taken laps at the Circuit of the Americas track in Austin, Texas.  
      When he is not on the track or in the control room, Cavanaugh gives back through student outreach. “The thing I always stress when I talk to students is that nothing is impossible,” he said. “I never thought I’d get to work in the space industry, let alone at NASA. But I stayed open to opportunities—even the ones that didn’t match what I originally imagined for myself.” 
      Explore More
      5 min read Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight
      Article 3 weeks ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 4 weeks ago 2 min read I Am Artemis: Joe Pavicic
      Article 4 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...