Jump to content

NASA Glenn Employees Chosen as Outstanding Hispanic STEM Professionals


Recommended Posts

  • Publishers
Posted
Nelson Morales (left), Janette C. Briones (center), and Azlin Biaggi-Labiosa smile at one another and sit on couches around a circular wooden table inside NASA Glenn Research Center’s Aerospace Communications Facility. Autumn leaves can be seen outside a large glass window in the background.
Nelson Morales (left), Janette C. Briones (center), and Azlin Biaggi-Labiosa at NASA Glenn Research Center’s Aerospace Communications Facility in October 2023.
Credit: NASA/Sara Lowthian-Hanna

Three employees from NASA’s Glenn Research Center in Cleveland have been chosen to receive awards that recognize the achievements of outstanding Hispanic engineers, scientists, and STEM professionals.

Janette C. Briones, Azlin Biaggi-Labiosa, and Nelson Morales will be presented with Hispanic Engineer National Achievement Award Corporation (HENAAC) and Luminary awards during the Great Minds in STEM conference in Pasadena, California, held from Oct. 11 through 14.

Learn more about the NASA Glenn honorees and each of their recognitions:

Nelson Morales

Nelson Morales poses next to a small model of NASA’s Space Launch System. He is wearing a blue collared shirt with a NASA logo.
Nelson Morales, chief of NASA Glenn’s Structural Mechanics Branch, has been chosen as a 2023 Luminary. This award recognizes Hispanic innovators who are engineering the future while lighting the way for the next generation of STEM leaders. Luminaries are chosen for their achievements leading, collaborating, and initiating key programs and research in their respective fields. “It’s an honor to receive this award because we want to be role models for the Hispanic community,” Morales said. “I am thankful for all of the people who have helped and supported me throughout the years and have made this possible.”
Credit: NASA/Sara Lowthian-Hanna

Janette C. Briones

Janette C. Briones stands to the right of a poster about cognitive communications. She is crossing her arms and wearing professional attire. She poses in front of a blue metal wall.
Janette C. Briones, project manager and principal investigator for NASA Glenn’s Cognitive Communications Project, has received the 2023 HENAAC Professional Achievement I (Government) award. The HENAAC award recognizes leaders, innovators, and champions who contribute to the Hispanic community at the highest levels of academia, government, military, and corporate America. “It’s something that I wasn’t expecting; there are so many outstanding engineers,” Briones said of being chosen for the award. “I’m very grateful that I have received it, and I have worked hard for it.”
Credit: NASA/Sara Lowthian-Hanna

Azlin Biaggi-Labiosa

Azlin Biaggi-Labiosa stands with her hand resting on a white couch in front of a large glass window. Trees can be seen through the window, and she is wearing glasses and professional attire.
Azlin Biaggi-Labiosa, NASA Glenn’s manager for the Foundational Electrified Aircraft Propulsion Subproject, has received the 2023 HENAAC Outstanding Technical Achievement (Government) award. The HENAAC award recognizes leaders, innovators, and champions who contribute to the Hispanic community at the highest levels of academia, government, military, and corporate America. “It feels great to be honored and appreciated,” Biaggi-Labiosa said. “It validates all the work that I put in these 14 years [at NASA].”
Credit: NASA/Sara Lowthian-Hanna

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Teams at NASA’s Michoud Assembly Facility in New Orleans move a liquid hydrogen tank for the agency’s SLS (Space Launch System) rocket into the factory’s final assembly area on April 22, 2025. The propellant tank is one of five major elements that make up the 212-foot-tall rocket stage. NASA/Steven Seipel NASA completed another step to ready its SLS (Space Launch System) rocket for the Artemis III mission as crews at the agency’s Michoud Assembly Facility in New Orleans recently applied a thermal protection system to the core stage’s liquid hydrogen tank.
      Building on the crewed Artemis II flight test, Artemis III will add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole region and prepare humanity to go to Mars. Thermal protection systems are a cornerstone of successful spaceflight endeavors, safeguarding human life, and enabling the launch and controlled return of spacecraft.
      The tank is the largest piece of SLS flight hardware insulated at Michoud. The hardware requires thermal protection due to the extreme temperatures during launch and ascent to space – and to keep the liquid hydrogen at minus 423 degrees Fahrenheit on the pad prior to launch.
      “The thermal protection system protects the SLS rocket from the heat of launch while also keeping the thousands of gallons of liquid propellant within the core stage’s tanks cold enough. Without the protection, the propellant would boil off too rapidly to replenish before launch,” said Jay Bourgeois, thermal protection system, test, and integration lead at NASA Michoud. “Thermal protection systems are crucial in protecting all the structural components of SLS during launch and flight.”
      In February, Michoud crews with NASA and Boeing, the SLS core stage prime contractor, completed the thermal protection system on the external structure of the rocket’s liquid hydrogen propellant fuel tank, using a robotic tool in what is now the largest single application in spaceflight history. The robotically controlled operation coated the tank with spray-on foam insulation, distributing 107 feet of the foam to the tank in 102 minutes. When the foam is applied to the core stage, it gives the rocket a canary yellow color. The Sun’s ultraviolet rays naturally “tan” the thermal protection, giving the SLS core stage its signature orange color, like the space shuttle external tank.
      Having recently completed application of the thermal protection system, teams will now continue outfitting the 130-foot-tall liquid hydrogen tank with critical systems to ready it for its designated Artemis III mission. The core stage of SLS is the largest ever built by length and volume, and was manufactured at Michoud using state-of-the-art manufacturing equipment. (NASA/Steven Seipel) While it might sound like a task similar to applying paint to a house or spraying insulation in an attic, it is a much more complex process. The flexible polyurethane foam had to withstand harsh conditions for application and testing. Additionally, there was a new challenge: spraying the stage horizontally, something never done previously during large foam applications on space shuttle external tanks at Michoud. All large components of space shuttle tanks were in a vertical position when sprayed with automated processes.
      Overall, the rocket’s core stage is 212 feet with a diameter of 27.6 feet, the same diameter as the space shuttle’s external tank. The liquid hydrogen and liquid oxygen tanks feed four RS-25 engines for approximately 500 seconds before SLS reaches low Earth orbit and the core stage separates from the upper stage and NASA’s Orion spacecraft.
      “Even though it only takes 102 minutes to apply the spray, a lot of careful preparation and planning is put into this process before the actual application of the foam,” said Boeing’s Brian Jeansonne, the integrated product team senior leader for the thermal protection system at NASA Michoud. “There are better process controls in place than we’ve ever had before, and there are specialized production technicians who must have certifications to operate the system. It’s quite an accomplishment and a lot of pride in knowing that we’ve completed this step of the build process.”
      The core stage of SLS is the largest NASA has ever built by length and volume, and it was manufactured at Michoud using state-of-the-art manufacturing equipment. Michoud is a unique, advanced manufacturing facility where the agency has built spacecraft components for decades, including the space shuttle’s external tanks and Saturn V rockets for the Apollo program.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      Sasha Weston, project support, Small Spacecraft and Distributed Systems program, with the Project and Engineering Support Services II contract with NASA, discusses the program with a participant, right, during Ames Partnership Days on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley. Through partnerships, the program advances technologies that enable small spacecraft to achieve NASA missions in faster and more affordable ways.NASA/Brandon Torres Navarrete On April 29, more than 90 representatives from industry, U.S. federal labs, government agencies, and academia gathered at NASA’s Ames Research Center in California’s Silicon Valley to learn about the center’s groundbreaking research and development capabilities. The three-day event provided insight into the many ways to collaborate with NASA, including tapping into the agency’s singular subject matter expertise and gaining access to state-of-the-art facilities at NASA Ames and centers across the country. Partnerships help the agency to advance technological innovation, enable science, and foster the emerging space economy.
      Terry Fong, senior scientist for autonomous systems at NASA Ames, summed up the objective of the event when he noted, “I don’t believe anyone – government, academia, industry – has a monopoly on good ideas. It’s how you best combine forces to have the greatest effect.”
      Terry Fong, senior scientist at NASA Ames, center, discusses the center’s capabilities in intelligent adaptive systems and potential applications with Jessica Nowinski, chief of the Human Systems Integration division, left, and Alonso Vera, senior technologist, right, on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley.NASA/Brandon Torres Navarrete Author: Jeanne Neal
      Share
      Details
      Last Updated May 13, 2025 Related Terms
      Ames Research Center General Get Involved NASA Centers & Facilities Partner With Us Small Business Innovation Research / Small Business Keep Exploring Discover More Topics From NASA
      SmallSats and CubeSats
      These miniaturized spacecrafts are used to deliver small payloads into space. LTB (Lunar Trailblazer) is an example of a SmallSat…
      Technology and Innovation
      NASA innovates and tests new technology on satellites and planes, helping commercial and academic partners develop better ways to observe…
      Technology Workshops and Events
      SBIR/STTR News & Success Stories
      View the full article
    • By NASA
      Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
      Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
      With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
      In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
      These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
      ViewSpace currently offers three Image Tours, and the collection will continue growing:
      Center of the Milky Way Galaxy:
      Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
      Herbig-Haro 46/47:
      Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
      The Whirlpool Galaxy:
      Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
      “The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
      NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share








      Details
      Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Astrophysics For Educators Explore More
      5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora


      Article


      1 day ago
      2 min read Hubble Comes Face-to-Face with Spiral’s Arms


      Article


      4 days ago
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What is a black hole?

      Well, the name is actually a little misleading because black holes aren’t actually holes. They’re regions in space that have a gravitational pull that is so strong that nothing can escape, not even light. Scientists know about two different sizes of black holes — stellar-mass black holes and supermassive black holes.

      A stellar-mass black hole is born when a massive star dies. That’s a star that’s larger than our own Sun. These stars burn up all the nuclear fuel in their cores, and this causes them to collapse under their own gravity. This collapse causes an explosion that we call a supernova. The entire mass of the star is collapsing down into a tiny point, and the area of the black hole is just a few kilometers across.

      Supermassive black holes can have a mass of millions to tens of billions of stars. Scientists believe that every galaxy in the universe contains a supermassive black hole. That’s up to one trillion galaxies in the universe. But we don’t know how these supermassive black holes form. And this is an area of active research.

      What we do know is that supermassive black holes are playing a really important part in the formation and evolution of galaxies, and into our understanding of our place in the universe.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated May 13, 2025 Related Terms
      General Explore More
      1 min read NASA Ames Stars of the Month: May 2025
      Article 1 day ago 3 min read NASA Earns Two Emmy Nominations for 2024 Total Solar Eclipse Coverage
      Article 5 days ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ICON’s next generation Vulcan construction system 3D printing a simulated Mars habitat for NASA’s Crew Health and Performance Exploration Analog (CHAPEA) missions.ICON One of the keys to a sustainable human presence on distant worlds is using local, or in-situ, resources which includes building materials for infrastructure such as habitats, radiation shielding, roads, and rocket launch and landing pads. NASA’s Space Technology Mission Directorate is leveraging its portfolio of programs and industry opportunities to develop in-situ, resource capabilities to help future Moon and Mars explorers build what they need. These technologies have made exciting progress for space applications as well as some impacts right here on Earth. 
      The Moon to Mars Planetary Autonomous Construction Technology (MMPACT) project, funded by NASA’s Game Changing Development program and managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, is exploring applications of large-scale, robotic 3D printing technology for construction on other planets. It sounds like the stuff of science fiction, but demonstrations using simulated lunar and Martian surface material, known as regolith, show the concept could become reality. 
      Lunar 3D printing prototype.Contour Crafting With its partners in industry and academic institutions, MMPACT is developing processing technologies for lunar and Martian construction materials. The binders for these materials, including water, could be extracted from the local regolith to reduce launch mass. The regolith itself is used as the aggregate, or granular material, for these concretes. NASA has evaluated these materials for decades, initially working with large-scale 3D printing pioneer, Dr. Behrokh Khoshnevis, a professor of civil, environmental and astronautical engineering at the University of Southern California in Los Angeles.  
      Khoshnevis developed techniques for large-scale extraterrestrial 3D printing under the NASA Innovative Advanced Concepts (NIAC) program. One of these processes is Contour Crafting, in which molten regolith and a binding agent are extruded from a nozzle to create infrastructure layer by layer. The process can be used to autonomously build monolithic structures like radiation shielding and rocket landing pads. 
      Continuing to work with the NIAC program, Khoshnevis also developed a 3D printing method called selective separation sintering, in which heat and pressure are applied to layers of powder to produce metallic, ceramic, or composite objects which could produce small-scale, more-precise hardware. This energy-efficient technique can be used on planetary surfaces as well as in microgravity environments like space stations to produce items including interlocking tiles and replacement parts. 
      While NASA’s efforts are ultimately aimed at developing technologies capable of building a sustainable human presence on other worlds, Khoshnevis is also setting his sights closer to home. He has created a company called Contour Crafting Corporation that will use 3D printing techniques advanced with NIAC funding to fabricate housing and other infrastructure here on Earth.  
      Another one of NASA’s partners in additive manufacturing, ICON of Austin, Texas, is doing the same, using 3D printing techniques for home construction on Earth, with robotics, software, and advanced material.  
      Construction is complete on a 3D-printed, 1,700-square-foot habitat that will simulate the challenges of a mission to Mars at NASA’s Johnson Space Center in Houston, Texas. The habitat will be home to four intrepid crew members for a one-year Crew Health and Performance Analog, or CHAPEA, mission. The first of three missions begins in the summer of 2023. The ICON company was among the participants in NASA’s 3D-Printed Habitat Challenge, which aimed to advance the technology needed to build housing in extraterrestrial environments. In 2021, ICON used its large-scale 3D printing system to build a 1,700 square-foot simulated Martian habitat that includes crew quarters, workstations and common lounge and food preparation areas. This habitat prototype, called Mars Dune Alpha, is part of NASA’s ongoing Crew Health and Performance Exploration Analog, a series of Mars surface mission simulations scheduled through 2026 at NASA’s Johnson Space Center in Houston.  
      With support from NASA’s Small Business Innovation Research program, ICON is also developing an Olympus construction system, which is designed to use local resources on the Moon and Mars as building materials. 
      The ICON company uses a robotic 3D printing technique called Laser Vitreous Multi-material Transformation, in which high-powered lasers melt local surface materials, or regolith, that then solidify to form strong, ceramic-like structures. Regolith can similarly be transformed to create infrastructure capable of withstanding environmental hazards like corrosive lunar dust, as well as radiation and temperature extremes.  
      The company is also characterizing the gravity-dependent properties of simulated lunar regolith in an experiment called Duneflow, which flew aboard a Blue Origin reusable suborbital rocket system through NASA’s Flight Opportunities program in February 2025. During that flight test, the vehicle simulated lunar gravity for approximately two minutes, enabling ICON and researchers from NASA to compare the behavior of simulant against real regolith obtained from the Moon during an Apollo mission.    
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/  
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More …
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      STMD Solicitations and Opportunities
      Technology
      Share
      Details
      Last Updated May 13, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
  • Check out these Videos

×
×
  • Create New...