Members Can Post Anonymously On This Site
STScI Astrophysicist Adam Riess Receives MacArthur Fellowship
-
Similar Topics
-
By NASA
Dr. Natasha Schatzman Receives Vertical Flight Society (VFS) Award
The Forum 81 award was presented to Natasha Schatzman (center), with the award given by the parents of Alex Stoll, Mark and Lyn Stoll, and flanked by VFS Chair of the Board Harry Nahatis (left) and VFS Executive Director Angelo Collins (right). Source: https://gallery.vtol.org/image/AloOB. Photo Credit: Warren Liebmann In May 2025, Dr. Natasha Schatzman, aerospace engineer in the Aeromechanics Office at NASA Ames Research Center, received the inaugural Alex M. Stoll Award from the Vertical Flight Society (VFS). This award honors a professional in the field of vertical flight who “demonstrates an exceptional commitment to advancing not only the mission of their organization but makes extraordinary contributions to enhancing the well-being and happiness of their colleagues.” Dr. Schatzman began her career at Ames in 2008 as a student intern while simultaneously completing her undergraduate studies at the Georgia Institute of Technology (Georgia Tech). She stayed at Georgia Tech through graduate school and finished her Ph.D. dissertation in 2018 in the Aeronautical and Astronautical Engineering Department. Currently, Dr. Schatzman is focusing on assessments of rotorcraft performance and aeroacoustics through experimentation and modeling at Ames Research Center. The Alex M. Stoll Award is the second time she has been honored by the VFS. In 2023, Dr. Schatzman received the François-Xavier Bagnoud Vertical Flight Award which is given to a member “who is 35 years old or younger for their career-to-date outstanding contributions to vertical flight technology.” More information on Dr. Schatzman’s 2025 award is at: https://vtol.org/awards-and-contests/vertical-flight-society-award-winners?awardID=28
About the Author
Osvaldo R. Sosa Valle
Osvaldo Sosa is a dedicated and detail-oriented project coordinator at NASA Ames Research Center, where he supports operations for the Aeronautics Directorate. He is part of the Strategic Communications Team and serves as managing editor for the Aeronautics topic on the NASA website. With experience in event coordination, logistics, and stakeholder engagement, Osvaldo brings strong organizational and communication skills to every project. He is passionate about driving innovation, fostering strong leadership, and streamlining operations to enhance team collaboration and organizational impact.
Explore More
2 min read NASA Provides Hardware for Space Station DNA Repair Experiment
Article 6 hours ago 3 min read NASA’s Moffett Federal Airfield Hosts Boeing Digital Taxi Tests
Article 2 weeks ago 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
Share
Details
Last Updated Jun 06, 2025 Related Terms
Ames Research Center View the full article
-
By NASA
Teams at NASA’s Michoud Assembly Facility in New Orleans move a liquid hydrogen tank for the agency’s SLS (Space Launch System) rocket into the factory’s final assembly area on April 22, 2025. The propellant tank is one of five major elements that make up the 212-foot-tall rocket stage. NASA/Steven Seipel NASA completed another step to ready its SLS (Space Launch System) rocket for the Artemis III mission as crews at the agency’s Michoud Assembly Facility in New Orleans recently applied a thermal protection system to the core stage’s liquid hydrogen tank.
Building on the crewed Artemis II flight test, Artemis III will add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole region and prepare humanity to go to Mars. Thermal protection systems are a cornerstone of successful spaceflight endeavors, safeguarding human life, and enabling the launch and controlled return of spacecraft.
The tank is the largest piece of SLS flight hardware insulated at Michoud. The hardware requires thermal protection due to the extreme temperatures during launch and ascent to space – and to keep the liquid hydrogen at minus 423 degrees Fahrenheit on the pad prior to launch.
“The thermal protection system protects the SLS rocket from the heat of launch while also keeping the thousands of gallons of liquid propellant within the core stage’s tanks cold enough. Without the protection, the propellant would boil off too rapidly to replenish before launch,” said Jay Bourgeois, thermal protection system, test, and integration lead at NASA Michoud. “Thermal protection systems are crucial in protecting all the structural components of SLS during launch and flight.”
In February, Michoud crews with NASA and Boeing, the SLS core stage prime contractor, completed the thermal protection system on the external structure of the rocket’s liquid hydrogen propellant fuel tank, using a robotic tool in what is now the largest single application in spaceflight history. The robotically controlled operation coated the tank with spray-on foam insulation, distributing 107 feet of the foam to the tank in 102 minutes. When the foam is applied to the core stage, it gives the rocket a canary yellow color. The Sun’s ultraviolet rays naturally “tan” the thermal protection, giving the SLS core stage its signature orange color, like the space shuttle external tank.
Having recently completed application of the thermal protection system, teams will now continue outfitting the 130-foot-tall liquid hydrogen tank with critical systems to ready it for its designated Artemis III mission. The core stage of SLS is the largest ever built by length and volume, and was manufactured at Michoud using state-of-the-art manufacturing equipment. (NASA/Steven Seipel) While it might sound like a task similar to applying paint to a house or spraying insulation in an attic, it is a much more complex process. The flexible polyurethane foam had to withstand harsh conditions for application and testing. Additionally, there was a new challenge: spraying the stage horizontally, something never done previously during large foam applications on space shuttle external tanks at Michoud. All large components of space shuttle tanks were in a vertical position when sprayed with automated processes.
Overall, the rocket’s core stage is 212 feet with a diameter of 27.6 feet, the same diameter as the space shuttle’s external tank. The liquid hydrogen and liquid oxygen tanks feed four RS-25 engines for approximately 500 seconds before SLS reaches low Earth orbit and the core stage separates from the upper stage and NASA’s Orion spacecraft.
“Even though it only takes 102 minutes to apply the spray, a lot of careful preparation and planning is put into this process before the actual application of the foam,” said Boeing’s Brian Jeansonne, the integrated product team senior leader for the thermal protection system at NASA Michoud. “There are better process controls in place than we’ve ever had before, and there are specialized production technicians who must have certifications to operate the system. It’s quite an accomplishment and a lot of pride in knowing that we’ve completed this step of the build process.”
The core stage of SLS is the largest NASA has ever built by length and volume, and it was manufactured at Michoud using state-of-the-art manufacturing equipment. Michoud is a unique, advanced manufacturing facility where the agency has built spacecraft components for decades, including the space shuttle’s external tanks and Saturn V rockets for the Apollo program.
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
For more information on the Artemis Campaign, visit:
https://www.nasa.gov/feature/artemis/
News Media Contact
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This ultra high-definition video featuring an orange tabby cat named Taters, was streamed from nearly 19 million miles away via laser by NASA’s Deep Space Optical Communications (DSOC) experiment, marking a historic milestone for space communications.Jet Propulsion Laboratory Since it began in 1958, NASA has been charged by law with spreading the word about its work to the widest extent practicable. From typewritten press releases to analog photos and film, the agency has effectively moved into social media and other online communications. NASA’s broad reach across digital platforms has been recognized by the International Academy of Digital Arts and Sciences (IADAS), with 10 nominations across multiple categories for the academy’s 29th annual Webby Awards.
The 2025 Webby nominations demonstrate NASA's dedication to sharing the wonders of space through digital platforms. We believe in the power of digital storytelling to inspire the next generation of explorers.
Michelle R. Jones
Acting Associate Administrator for Communications
Public Voting Opportunities
Voting for the Webby People’s Voice Awards—chosen by the public—is open now through Thursday, April 17. Voting links for each category are listed below.
29th Annual Webby Award Nominees
AI, Immersive & Games
NASA’s Snap It! An Eclipse Photo Adventure
NASA
Kids and Family
Social
NASA Instagram
NASA
Education and Science
Matt Dominick’s X Account: A Visual Journey from Space
NASA, Leidos
Best Photography & Design
NASA’s 2024 Total Solar Eclipse Campaign
NASA
Events and Live streams
NASA’s Webb Telescope: Unfolding a Universe of Wonders
NASA Goddard
Education and Science
Video & Film
2024 Total Solar Eclipse: Through the Eyes of NASA
NASA, Leidos
Events and Live
NASA Streams Historic Cat Video From Deep Space
NASA’s Jet Propulsion Laboratory
Events and Live streams
Websites & Mobile Sites
NASA Website
NASA
Government & Associations
NASA+ Streaming Service
NASA
Television, Film & Streaming
NASA Newsletter
NASA
Business, News and Technology
About the Webby Awards
Established in 1996 during the web’s infancy, The Webbys is presented by the IADAS—a 3000+ member judging body. The Academy is comprised of Executive Members—leading Internet experts, business figures, luminaries, visionaries, and creative celebrities—and associate members who are former Webby winners, nominees and other internet professionals.
The Webby Awards presents two honors in every category—the Webby Award and the Webby People’s Voice Award. Members of the International Academy of Digital Arts and Sciences (IADAS) select the nominees for both awards in each category, as well as the winners of the Webby Awards. In the spirit of the open web, the Webby People’s Voice is chosen by the voting public, and garners millions of votes from all over the world.
View the full article
-
By NASA
Intuitive Machines’ IM-2 captured an image March 6, 2025, after landing in a crater from the Moon’s South Pole. The lunar lander is on its side about 820 feet from the intended landing site, Mons Mouton. In the center of the image between the two lander legs is the Polar Resources Ice Mining Experiment 1 suite, which shows the drill deployed.Credit: Intuitive Machines Shortly after touching down inside a crater on the Moon, carrying NASA technology and science on its IM-2 mission, Intuitive Machines collected some data for the agency before calling an early end of mission at 12:15 a.m. CST Friday.
As part of the company’s second Moon delivery for NASA under the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the IM-2 mission included a drill to bring lunar soil to the surface and a mass spectrometer to look for the presence of volatiles, or gases, that could one day help provide fuel or breathable oxygen to future Artemis explorers.
Planned to land at Mons Mouton, IM-2 touched down at approximately 11:30 a.m. March 6, more than 1,300 feet (400 meters) from its intended landing site. Intuitive Machines said images collected later confirmed the lander was on its side, preventing it from fully operating the drill and other instruments before its batteries were depleted.
The IM-2 mission landed closer to the lunar South Pole than any previous lander.
“Our targeted landing site near the lunar South Pole is one of the most scientifically interesting, and geographically challenging locations, on the Moon,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “Each success and setback are opportunities to learn and grow, and we will use this lesson to propel our efforts to advance science, exploration, and commercial development as we get ready for human exploration of Mars.”
The Nova-C lander, named Athena, captured and transmitted images of the landing site before activating the technology and science instruments. Among the data collected, NASA’s PRIME-1 (Polar Resources Ice Mining Experiment 1) suite, which includes the lunar drill known as TRIDENT (The Regolith and Ice Drill for Exploring New Terrain), successfully demonstrated the hardware’s full range of motion in the harsh environment of space. The Mass Spectrometer Observing Lunar Operations (MSOLO) as part of the PRIME-1 suite of instruments, detected elements likely due to the gases emitted from the lander’s propulsion system.
“While this mission didn’t achieve all of its objectives for NASA, the work that went into the payload development is already informing other agency and commercial efforts,” said Clayton Turner, associate administrator for space technology, NASA Headquarters. “As we continue developing new technologies to support exploration of the Moon and Mars, testing technologies in-situ is crucial to informing future missions. The CLPS initiative remains an instrumental method for achieving this.”
Despite the lander’s configuration, Intuitive Machines, which was responsible for launch, delivery, and surface operations under its CLPS contract, was able to complete some instrument checkouts and collect 250 megabytes of data for NASA.
“Empowering American companies to deliver science and tech to the Moon on behalf of NASA both produces scientific results and continues development of a lunar economy,” said Joel Kearns, deputy associate administrator for Exploration in the Science Mission Directorate at NASA Headquarters. “While we’re disappointed in the outcome of the IM-2 mission, we remain committed to supporting our commercial vendors as they navigate the very difficult task of landing and operating on the Moon.”
NASA’s Laser Retroreflector Array, a passive instrument meant to provide a reference point on the lunar surface and does not power on, will remain affixed to the top deck of the lander. Although Intuitive Machines’ Nova-C Hopper and Nokia’s 4G/LTE Tipping Point technologies, funded in part by NASA, were only able to complete some objectives, they provided insight into maturing technologies ready for infusion into a commercial space application including some checkouts in flight and on the surface.
Intuitive Machines’ IM-2 mission launched at 6:16 p.m., Feb. 26, aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
Intuitive Machines has two more deliveries on the books for NASA in the future, with its IM-3 mission slated for 2026, and IM-4 mission in 2027.
To date, five vendors have been awarded a total of 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the Moon’s far side and South Pole region. CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.
Learn more about NASA’s CLPS initiative at:
https://www.nasa.gov/clps
-end-
Cheryl Warner / Jasmine Hopkins
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov / jasmine.s.hopkins@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Mar 07, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Science & Research Science Mission Directorate Space Technology Mission Directorate View the full article
-
By NASA
The National Society of Professional Engineers recently named Debbie Korth, Orion deputy program manager at Johnson Space Center, as NASA’s 2025 Engineer of the Year. Korth was recognized during an award ceremony at the National Press Club in Washington, D.C., on Feb. 21, alongside honorees from 17 other federal agencies. The annual awards program honors the impactful contributions of federal engineers and their commitment to public service.
Debbie Korth received the NASA 2025 Engineer of the Year Award from the National Society of Professional Engineers at the National Press Club in Washington, D.C. Image courtesy of Debbie Korth Korth said she was shocked to receive the award. “At NASA there are so many brilliant, talented engineers who I get to work with every day who are so specialized and know so much about a certain area,” she said. “It was very surprising, but very appreciated.”
Korth has dedicated more than 30 years of her career to NASA, supporting human spaceflight development, integration, and operations across the Space Shuttle, International Space Station, and Orion Programs. Her earliest roles involved extravehicular and mission operations planning, as well as managing spaceflight hardware for shuttle missions and space station crews. Working on hardware such as the Crew Health Care System in the early days of space station planning and development was a unique experience for Korth.
After spending significant time in Russia collaborating with Russian counterparts to integrate equipment such as a treadmill, cycle ergometer, and blood pressure monitor into their module, Korth recalled, “When we finally got that all delivered and integrated, it was a huge step because we had to have all of that on board before we could put crew members on the station for the first time. I remember feeling a huge sense of accomplishment and happiness that we were able to work through this international partnership and forge those relationships to get that hardware integrated.”
Korth transitioned to the Orion Program in 2008 and has since served in a variety of leadership roles. In her current role, Korth assists the program manager in the design, development, testing, verification, and certification of Orion, NASA’s next-generation, human-rated spacecraft for Artemis missions. The spacecraft’s first flight test around the Moon during the Artemis I mission was a standout experience for Korth and a major accomplishment for the Orion team.
“It was a long mission and every day we were learning more and more about the spacecraft and pushing boundaries,” she said. “We really wrung out some of the core systems – systems that were developed individually and for the first time we got to see them work together.”
Korth said that understanding how different systems interact with each other is what she loves most about engineering. “In systems engineering, you really look at how changes to and the performance of one system affects everything else,” she said. “I like looking across the entire spacecraft and saying, if I have to strengthen this structure to take some additional landing loads, that’s going to add mass to the vehicle, which means I have to look at my parachutes and the thermal protection system to make sure they can handle that increased load.”
The Orion team is working to achieve two major milestones in 2025 – delivery of the Artemis II Orion spacecraft to the Exploration Ground Systems team that will fuel and integrate Orion with its launch abort system at NASA’s Kennedy Space Center, and the spacecraft’s integration with the Space Launch System rocket, which is currently being stacked. These milestones will support the launch of the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration, with liftoff targeted no earlier than April 2026.
“It’s going to be a big year,” said Korth.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.