Jump to content

The Marshall Star for October 11, 2023


Recommended Posts

  • Publishers
Posted
18 Min Read

The Marshall Star for October 11, 2023

Cyclists compete during the bicycle portion of “Racin’ the Station.”
Cyclists compete during the bicycle portion of “Racin’ the Station.”
Credits: NASA/Mick Speer

Marshall Presents Small Business Awards for 2023

NASA’s Marshall Space Flight Center honored top contractors, subcontractors, teams, and individuals of fiscal year 2023 at the 36th meeting of the Marshall Small Business Alliance.

David Brock, small business specialist at Marshall Space Flight Center, welcomes attendees of the 36th Marshall Small Business Alliance meeting and 17th Industry & Advocate Awards.
David Brock, small business specialist at Marshall Space Flight Center, welcomes attendees of the 36th Marshall Small Business Alliance meeting and 17th Industry & Advocate Awards.
NASA/Mick Speer

The event took place Sept. 21 at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration. Around 600 participants from industry and government gathered to network, learn about business opportunities, and recognize outstanding achievements in support of NASA’s mission and the small business community.

“Marshall is an engine of opportunity for its community and beyond,” said David Brock, small business specialist in Marshall’s Office of Procurement.

Leah Fox, program specilaist for Marshall’s Center Operations talks with an attendee of the 36th Marshall Small Business Alliance Meeting.
Leah Fox, program specilaist for Marshall’s Center Operations talks with an attendee of the 36th Marshall Small Business Alliance Meeting.
NASA/Mick Speer

Marshall’s Industry & Advocate Awards are presented annually and reflect leadership in business community and sustained achievement in service to NASA’s mission.

This year’s award recipients are:

Small Business Prime Contractor of the Year

Victory Solutions Inc.

Small Business Subcontractor of the Year

Waterfront Technical Services

Large Business Prime Contractor of the Year

Jacobs Space Exploration Group

Small Business Mentor-Protégé of the Year Award

Jacobs/CH2M and K.S. Ware

Procurement Person of the Year

Dana Justice, Marshall Office of Procurement

Program Team of the Year

2023 Small Business Action Team, Marshall Office of Procurement

Michelle Anzalone, Ashley Cox, Stephanie Darnell, John David Eagan, Dana Justice, and Josh Wilbourn

Small Business Technical Advisor of the Year

Chip Jones, Marshall Science & Technology Office     

Small Business Technical Person of the Year

Karen Lawler, Marshall Office of the Chief Financial Officer

John Cannaday, director of Marshall’s Office of Procurement, gives opening remarks at the 36th Small Business Alliance Meeting and Industry & Advocacy Awards.
John Cannaday, director of Marshall’s Office of Procurement, gives opening remarks at the 36th Small Business Alliance Meeting and Industry & Advocacy Awards.
NASA/Mick Speer

NASA civil service employees nominate eligible individuals and organizations for awards. A panel of NASA procurement and technical officials evaluates each nominee’s business practices, innovative processes, adoption of new technologies and their overall contributions to NASA’s mission and the agency’s Small Business Program.

Award recipients in the following categories become candidates for agency-level Small Business Industry and Advocate Awards:

  • Large and Small Business Prime Contractors of the Year
  • Small Business Subcontractor of the Year
  • Procurement Team or Person
  • Technical, Small Business Technical Coordinator/Technical Advisor
  • Program Person or Team of the Year

Learn more about Marshall’s small business initiatives.

› Back to Top

NASA Announces Teams for 2024 Student Launch Challenge

NASA has announced the 70 teams representing 24 states and Puerto Rico selected to compete in the 2024 Student Launch Challenge.

The annual competition – one of NASA’s nine Artemis Student Challenges – requires middle/high school and college/university students to design, build, and fly a high-powered amateur rocket and scientific payload.

Students from the AIAA Orange Country Section team of Irvine, California, display their rocket to news media and the public during Rocket Fair – an annual showcase event of NASA’s Student Launch competition April 2023.
Students from the AIAA Orange Country Section team of Irvine, California, display their rocket to news media and the public during Rocket Fair – an annual showcase event of NASA’s Student Launch competition April 2023.
NASA

The nine-month-long challenge will culminate with on-site events April 10-14, 2024, with final launches April 13 at Bragg Farms in Toney, Alabama, just minutes north of NASA’s Marshall Space Flight Center. Teams are not required to travel for their final launch, having the option to launch from a qualified. Details are outlined in the Student Launch Handbook.

Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of color on the Moon.

Students will design a SAIL (STEMnaut Atmosphere Independent Lander) payload. It must deploy mid-air, safely return to the ground without using a parachute, and be reusable to launch the same day without repairs or modifications. The payload will contain a crew of four STEMnauts, non-living objects representing astronauts. Students will choose metrics to determine the endurance of the lander, considering acceptable descent and landing parameters.

University/college teams are required to meet the 2024 payload requirements set by NASA, but middle/high school teams have the option to tackle the same challenge or design their own payload experiment.

Student teams and attendees of NASA’s 2023 Student Launch competition observe a rocket take flight near NASA’s Marshall Space Flight Center in Huntsville, Alabama, April 2023.
Student teams and attendees of NASA’s 2023 Student Launch competition observe a rocket take flight near NASA’s Marshall Space Flight Center.
NASA

Student teams will undergo detailed reviews by NASA personnel to ensure the safety and feasibility of their rocket and payload designs. All teams must declare their rocket’s targeted altitude for final launch day during a preliminary design review. The team closest to their target will win the Altitude Award, just one of multiple awards presented to deserving teams at the end of the competition. Other awards include overall winner, vehicle design, experiment design, social media presence, and more.

In addition to the engineering and science side of the competition, students must also participate in outreach efforts such as engaging with local schools and maintaining effective social media accounts. Student Launch is an all-encompassing challenge and aims to prepare the next generation for the professional world of space exploration.

The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.

› Back to Top

Racers Run, Bike, Run to Beat the Space Station in Annual Duathlon

On the morning of Sept. 30, 160 athletes ran and biked across NASA’s Marshall Space Flight Center and Redstone Arsenal in a race to beat the International Space Station. The annual “Racin’ the Station” duathlon is a run-bike-run event where participants try to complete the course faster than it takes the space station to complete one Earth orbit, which is every 91 minutes, 12 seconds.

Organizers track the starting location of the space station at the race start, and a costumed pacer keeps up with the station time on the course as a visual marker for participants to stay ahead of. Before the race, organizers drew a to-scale Space Launch System Block 1 rocket in chalk onto the Activities Building parking lot near the race transition area. The race began in 2012, and this year was the 11th running (the event did not occur in 2020 due to the pandemic).

Racers competed to beat the International Space Station in the annual “Racin’ the Station” duathlon Sept. 30 at Marshall Space Flight Center. The goal of the race is to complete the course faster than the station takes to complete one Earth orbit, or just over 90 minutes.
Racers competed to beat the International Space Station in the annual “Racin’ the Station” duathlon Sept. 30 at Marshall Space Flight Center. The goal of the race is to complete the course faster than the station takes to complete one Earth orbit, or just over 90 minutes.
Credits: NASA/Mick Speer

“Racin’ the Station” is not just an athletic event,” said race director and Marshall engineer Kent Criswell. “I try to also focus on educating the community about what Marshall is doing. For example, the water aid station on the run course – I call it the ECLSS (Environmental Control and Life Support System) station, but I also assure them that the water is not recycled urine from astronauts! It is a great event for any geek in the southeast — people drive all the way from Birmingham and Nashville to compete.”

The event began at 7:50 a.m. with an opening ceremony in Marshall’s Activities Building, where racers got pumped up watching the Metallica/NASA “Fuel” video for Artemis II. With the weather slowly warming, the field took off at 8:15 a.m., with a model rocket launch as the starting signal. The “station pacer” this year was dressed as Star-Lord, a superhero character appearing in the comic book and film series “Guardians of the Galaxy.”

Cyclists compete during the bicycle portion of “Racin’ the Station.”
Cyclists compete during the bicycle portion of “Racin’ the Station.”
Credits: NASA/Mick Speer

The course is three legs: a 3.14 km run, followed by a 23 km bicycle ride, and another 3.14 km run, with the start and finish line at Marshall’s Wellness Center. Race organizers arranged the distances to coincide with the number pi, approximately 3.14.

Participants can complete the entire race as an individual, or as a relay team. Eighteen teams and 124 individual racers competed, and 92 of those beat the station this year.

Runners compete in one of the two 3.14 km runs in “Racin’ the Station.”
Runners compete in one of the two 3.14 km runs in “Racin’ the Station.”
NASA/Mick Speer

The event is organized by the Team Rocket Triathlon Club in Huntsville and by the Marshall Association, a professional employee service organization at the Marshall Center whose members include civil service employees, retirees, and contractors.

For details on the race, including course maps and distances, visit the Racin’ the Station Duathlon website. Race results can be found here.

› Back to Top

Psyche Mission Highlighted on ‘This Week at NASA’

NASA is targeting no earlier than Oct. 12 for the launch of its Psyche spacecraft on a 2.2-billion-mile journey to study a metal-rich asteroid of the same name. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online.

The Psyche asteroid lies in the outer portion of the main asteroid belt between Mars and Jupiter, and may be able to tell us more about the formation of rocky planets like Earth. This is NASA’s first mission to study an asteroid that has more metal than rock or ice.

Watch live coverage of the Oct. 12 Psyche launch beginning at 8:30 a.m. on NASA TV.

Psyche is the 14th planetary exploration mission in NASA’s Discovery program, which is managed for the agency by NASA’s Marshall Space Flight Center. Read more about Marshall’s role in the Psyche mission.

View this and previous episodes at “This Week @NASA” on NASA’s YouTube page.

› Back to Top

Experience Solar Eclipse on Oct. 14

On Oct. 14, 2023, and April 8, 2024, the entire United States and millions around the world will be able to view a solar eclipse.

A map shows the 48 contiguous U.S. states with two dark bands running across it. One band, labeled "2023 Annular Solar Eclipse," crosses states from Oregon to Texas. The other band, labeled "2024 Total Solar Eclipse," crosses states from Texas to Maine.
A map showing where the Moon’s shadow will cross the U.S. during the 2023 annular solar eclipse and 2024 total solar eclipse.
Credits: NASA SVS

There are three different kinds of solar eclipses: total, annular, and partial. When the Moon is far from the Earth, its size is too small to completely cover the Sun, thus an annular eclipse is observed, like what is expected on Oct. 14. When the Moon is close to the Earth, its larger size completely covers the Sun, causing a total eclipse, which will occur on April 8, 2024. A partial eclipse occurs when the Earth, Moon, and Sun are not perfectly aligned so only a part of the Sun will appear to be covered, giving it a crescent shape. During a total or annular solar eclipse, people outside the totality/annularity paths will see a partial solar eclipse.   

From left to right, this image shows a total solar eclipse, annular solar eclipse, and partial solar eclipse.
From left to right, this image shows a total solar eclipse, annular solar eclipse, and partial solar eclipse.
NASA

Mitzi Adams, NASA Marshall Space Flight Center​ Heliophysics and Planetary Science branch assistant chief, shares her observations during the five total eclipses she has experienced. “It is like nothing you’ve ever experienced before. It’s sort of like somebody puts a bowl on top of Earth right above where you’re standing. In the middle of the day, it gets darker, but you can still see light around the rim.” Adams explains. “You can essentially observe a sunrise or sunset. The temperatures cool. The wind picks up. The birds may go to roost, or the coyotes may howl.”

During an annular eclipse like the one coming up on Oct. 14, even with the sun covered up to 90%, the sky remains fairly bright. Those in the path of annularity will have a chance to observe the famed “ring of fire” effect, but it is important to manage your expectations and to remember that solar viewing glasses will be needed during the event’s entirety.

Bill Cooke, NASA’s Meteoroid Environment Office lead and eclipse enthusiast, says he is most looking forward to the 2024 total eclipse because totality, when the sun is covered 100%, will last much longer than the last total eclipse in 2017 – up to nearly four and a half minutes.

In any of the upcoming eclipse events, in our technology-fueled world, you may also experience some electronic changes as the moon moves across Earth and the ionosphere cools.

The ionosphere forms the boundary between the Earth’s lower atmosphere – where we live and breathe – and the vacuum of space. It is formed when particles are charged, or ionized, by solar radiation. A total solar eclipse effectively “turns off” the ionosphere’s primary charging mechanism, mimicking nighttime conditions, so the many communications signals passing through the ionosphere could be disrupted.

GPS signals could produce location errors. Radio waves could change, sometimes even allowing Ham Radio operators to send or receive transmissions over longer distances.

The ionosphere is also home to many NASA satellites, including the International Space Station.

Experiencing an eclipse is one way that everyone can participate in NASA Science. Depending on your access to different types of technology (phones, laptops, telescopes), there are several NASA Citizen Science projects you can participate in that relate to the Sun’s corona and the effects of the Moon’s shadow on Earth’s upper atmosphere.

  • GLOBE Observer
    • Help monitor the conditions of clouds, water (especially as a habitat for mosquitoes), plants (trees and other land cover), and see change over time.
  • Solar Jet Hunter
    • Join the hunt for solar jets – enigmatic bursts of energy from our own star – the Sun.
  • Planet Hunters Transiting Exoplanet Survey Satellite (TESS)
    • Find planets that will help us understand how these extrasolar systems form and evolve over time
  • Eclipse Soundscapes
    • Provide multi-sensory observations and recorded sound data to study how solar eclipses affect life on Earth!    
  • HamSCI
    • Advance scientific research and understanding through amateur radio activities.
  • Radio JOVE
    • Observe and analyze natural radio emissions of Jupiter, the Sun, and our galaxy using their own easy to construct radio telescopes.
  • Sungrazer Project
    • Become a “Comet Hunter”, and immediately begin looking for new comets in the spacecraft data. 

Regardless of how you plan to experience a solar eclipse, or any solar viewing for that matter, remember to always do so safely.

› Back to Top

NASA’s Bennu Asteroid Sample Contains Carbon, Water

Initial studies of the 4.5-billion-year-old asteroid Bennu sample collected in space and brought to Earth by NASA show evidence of high-carbon content and water, which together could indicate the building blocks of life on Earth may be found in the rock. NASA made the news Oct. 11 from its Johnson Space Center where leadership and scientists showed off the asteroid material for the first time since it landed in September.

This finding was part of a preliminary assessment of NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security – Regolith Explorer) science team.

nelson-tagsam-shot-b.jpg?w=2048
A view of the outside of the OSIRIS-REx sample collector. Sample material from asteroid Bennu can be seen on the middle right. Scientists have found evidence of both carbon and water in initial analysis of this material. The bulk of the sample is located inside.
Photo: NASA/Erika Blumenfeld & Joseph Aebersold

“The OSIRIS-REx sample is the biggest carbon-rich asteroid sample ever delivered to Earth and will help scientists investigate the origins of life on our own planet for generations to come,” said NASA Administrator Bill Nelson. “Almost everything we do at NASA seeks to answer questions about who we are and where we come from. NASA missions like OSIRIS-REx will improve our understanding of asteroids that could threaten Earth while giving us a glimpse into what lies beyond. The sample has made it back to Earth, but there is still so much science to come – science like we’ve never seen before.”  

Although more work is needed to understand the nature of the carbon compounds found, the initial discovery bodes well for future analyses of the asteroid sample. The secrets held within the rocks and dust from the asteroid will be studied for decades to come, offering insights into how our solar system was formed, how the precursor materials to life may have been seeded on Earth, and what precautions need to be taken to avoid asteroid collisions with our home planet.

The goal of the OSIRIS-REx sample collection was 60 grams of asteroid material. Curation experts at NASA Johnson, working in new clean rooms built especially for the mission, have spent 10 days so far carefully disassembling the sample return hardware to obtain a glimpse at the bulk sample within. When the science canister lid was first opened, scientists discovered bonus asteroid material covering the outside of the collector head, canister lid, and base. There was so much extra material it slowed down the careful process of collecting and containing the primary sample.

“Our labs were ready for whatever Bennu had in store for us,” said Vanessa Wyche, director, NASA Johnson. “We’ve had scientists and engineers working side-by-side for years to develop specialized gloveboxes and tools to keep the asteroid material pristine and to curate the samples so researchers now and decades from now can study this precious gift from the cosmos.”

Within the first two weeks, scientists performed “quick-look” analyses of that initial material, collecting images from a scanning electron microscope, infrared measurements, X-ray diffraction, and chemical element analysis. X-ray computed tomography was also used to produce a 3D computer model of one of the particles, highlighting its diverse interior. This early glimpse provided the evidence of abundant carbon and water in the sample.

“As we peer into the ancient secrets preserved within the dust and rocks of asteroid Bennu, we are unlocking a time capsule that offers us profound insights into the origins of our solar system,” said Dante Lauretta, OSIRIS-REx principal investigator, University of Arizona, Tucson. “The bounty of carbon-rich material and the abundant presence of water-bearing clay minerals are just the tip of the cosmic iceberg. These discoveries, made possible through years of dedicated collaboration and cutting-edge science, propel us on a journey to understand not only our celestial neighborhood but also the potential for life’s beginnings. With each revelation from Bennu, we draw closer to unraveling the mysteries of our cosmic heritage.”

For the next two years, the mission’s science team will continue characterizing the samples and conduct the analysis needed to meet the mission’s science goals. NASA will preserve at least 70% of the sample at Johnson for further research by scientists worldwide, including future generations of scientists. As part of OSIRIS-REx’s science program, a cohort of more than 200 scientists around the world will explore the regolith’s properties, including researchers from many U.S. institutions, NASA partners JAXA (Japan Aerospace Exploration Agency), CSA (Canadian Space Agency), and other scientists from around the world. Additional samples will also be loaned later this fall to the Smithsonian Institution, Space Center Houston, and the University of Arizona for public display.

NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Lauretta, the principal investigator, leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, provided flight operations, and was responsible for capsule recovery. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx, including processing the sample when it arrived on Earth, is taking place at NASA Johnson.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the Science Mission Directorate at NASA Headquarters. Read more about Marshall’s role in OSIRIS-REx.

› Back to Top

Webb Captures an Ethereal View of NGC 346

One of the greatest strengths of NASA’s James Webb Space Telescope is its ability to give astronomers detailed views of areas where new stars are being born. The latest example, showcased in a new image from Webb’s MIRI (Mid-Infrared Instrument), is NGC 346 – the brightest and largest star-forming region in the SMC (Small Magellanic Cloud).

The SMC is a satellite galaxy of the Milky Way, visible to the unaided eye in the southern constellation Tucana. This small companion galaxy is more primeval than the Milky Way in that it possesses fewer heavy elements, which are forged in stars through nuclear fusion and supernova explosions, compared to our own galaxy.

The lower half of this image contains arcs of bluish material that form a boat-like shape. One end of these arcs points to the top right of the image, while the other end points toward the bottom left. Another plume of blue filaments expands from the center to the top left, resembling the mast of a sailboat. Within and extending beyond the boat shape are translucent curtains of pink, which appear atop the boat shape as well and cover most of the image. Stars are noticeably scarce. A couple dozen bright pink patches with six short diffraction spikes are scattered within the blue filaments. Many faint blue dots, or stars, also speckle the background, which is black or dark gray.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs.
NASA, ESA, CSA, STScI, N. Habel (JPL). Image Processing: P. Kavanagh (Maynooth University).

Since cosmic dust is formed from heavy elements like silicon and oxygen, scientists expected the SMC to lack significant amounts of dust. However the new MIRI image, as well as a previous image of NGC 346 from Webb’s Near-Infrared Camera released in January, show ample dust within this region.

In this representative-color image, blue tendrils trace emission from material that includes dusty silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. An arc at the center left may be a reflection of light from the star near the arc’s center. (Similar, fainter arcs appear associated with stars at lower left and upper right.) Lastly, bright patches and filaments mark areas with abundant numbers of protostars. The research team looked for the reddest stars, and found 1,001 pinpoint sources of light, most of them young stars still embedded in their dusty cocoons.

By combining Webb data in both the near-infrared and mid-infrared, astronomers are able to take a fuller census of the stars and protostars within this dynamic region. The results have implications for our understanding of galaxies that existed billions of years ago, during an era in the universe known as “cosmic noon,” when star formation was at its peak and heavy element concentrations were lower, as seen in the SMC.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Glittering Glimpse of Star Birth From NASA’s Webb Telescope
      Webb captured this sparkling scene of star birth in Pismis 24. Full image and caption below. Credits:
      Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) This is a sparkling scene of star birth captured by NASA’s James Webb Space Telescope. What appears to be a craggy, starlit mountaintop kissed by wispy clouds is actually a cosmic dust-scape being eaten away by the blistering winds and radiation of nearby, massive, infant stars.
      Called Pismis 24, this young star cluster resides in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. Its proximity makes this region one of the best places to explore the properties of hot young stars and how they evolve.
      At the heart of this glittering cluster is the brilliant Pismis 24-1. It is at the center of a clump of stars above the jagged orange peaks, and the tallest spire is pointing directly toward it. Pismis 24-1 appears as a gigantic single star, and it was once thought to be the most massive known star. Scientists have since learned that it is composed of at least two stars, though they cannot be resolved in this image. At 74 and 66 solar masses, respectively, the two known stars are still among the most massive and luminous stars ever seen.
      Image A: Pismis 24 (NIRCam Image)
      Webb captured this sparkling scene of star birth in Pismis 24, a young star cluster about 5,500 light-years from Earth in the constellation Scorpius. This region is one of the best places to explore the properties of hot young stars and how they evolve. Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) Captured in infrared light by Webb’s NIRCam (Near-Infrared Camera), this image reveals thousands of jewel-like stars of varying sizes and colors. The largest and most brilliant ones with the six-point diffraction spikes are the most massive stars in the cluster. Hundreds to thousands of smaller members of the cluster appear as white, yellow, and red, depending on their stellar type and the amount of dust enshrouding them. Webb also shows us tens of thousands of stars behind the cluster that are part of the Milky Way galaxy.
      Super-hot, infant stars –some almost 8 times the temperature of the Sun – blast out scorching radiation and punishing winds that are sculpting a cavity into the wall of the star-forming nebula. That nebula extends far beyond NIRCam’s field of view. Only small portions of it are visible at the bottom and top right of the image. Streamers of hot, ionized gas flow off the ridges of the nebula, and wispy veils of gas and dust, illuminated by starlight, float around its towering peaks.
      Dramatic spires jut from the glowing wall of gas, resisting the relentless radiation and winds. They are like fingers pointing toward the hot, young stars that have sculpted them. The fierce forces shaping and compressing these spires cause new stars to form within them. The tallest spire spans about 5.4 light-years from its tip to the bottom of the image. More than 200 of our solar systems out to Neptune’s orbit could fit into the width its tip, which is 0.14 lightyears.
      In this image, the color cyan indicates hot or ionized hydrogen gas being heated up by the massive young stars. Dust molecules similar to smoke here on Earth are represented in orange. Red signifies cooler, denser molecular hydrogen. The darker the red, the denser the gas. Black denotes the densest gas, which is not emitting light. The wispy white features are dust and gas that are scattering starlight.
      Video A: Expedition to Star Cluster Pismis 24
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This scientific visualization takes viewers on a journey to a glittering young star cluster called Pismis 24. NASA’s James Webb Space Telescope captured this fantastical scene in the heart of the Lobster Nebula, approximately 5,500 light-years from Earth. Video: NASA, ESA, CSA, STScI, Leah Hustak (STScI), Christian Nieves (STScI); Image Processing: Alyssa Pagan (STScI); Script Writer: Frank Summers (STScI); Narration: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA Video B: Zoom to Pismis 24
      This zoom-in video shows the location of the young star cluster Pismis 24 on the sky. It begins with a ground-based photo of the constellation Scorpius by the late astrophotographer Akira Fujii. The sequence closes in on the Lobster Nebula, using views from the Digitized Sky Survey. As the video homes in on a select portion, it fades to a VISTA image in infrared light. The zoom continues in to the region around Pismis 24, where it transitions to the stunning image captured by NASA’s James Webb Space Telescope in near-infrared light.
      Video: NASA, ESA, CSA, STScI, Alyssa Pagan (STScI); Narration: Frank Summers (STScI); Script Writer: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA, Akira Fujii, DSS The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about Hubble’s view of Pismis 24
      Listen to a sonification of Hubble’s view of Pismis 24
      Animation Video: “How Dense Pillars Form in Molecular Clouds”
      Read more: Webb’s Star Formation Discoveries
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      James Webb Space Telescope (JWST) View the full article
    • By NASA
      NASA/Nichole Ayers On July 26, 2025, NASA astronaut Nichole Ayers took this long-exposure photograph – taken over 31 minutes from a window inside the International Space Station’s Kibo laboratory module – capturing the circular arcs of star trails.
      In its third decade of continuous human presence, the space station has a far-reaching impact as a microgravity lab hosting technology, demonstrations, and scientific investigations from a range of fields. The research done on the orbiting laboratory will inform long-duration missions like Artemis and future human expeditions to Mars.
      Image credit: NASA/Nichole Ayers
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Homes in on Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
      This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
      The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
      The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
      This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
      The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
      Explore More:

      Learn more about why astronomers study light in detail


      Explore the different wavelengths of light Hubble sees


      Explore the Night Sky: Messier 96

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      This graphic features data from NASA’s Chandra X-ray Observatory of the Cassiopeia A (Cas A) supernova remnant that reveals that the star’s interior violently rearranged itself mere hours before it exploded. The main panel of this graphic is Chandra data that shows the location of different elements in the remains of the explosion: silicon (represented in red), sulfur (yellow), calcium (green) and iron (purple). The blue color reveals the highest-energy X-ray emission detected by Chandra in Cas A and an expanding blast wave. The inset reveals regions with wide ranges of relative abundances of silicon and neon. This data, plus computer modeling, reveal new insight into how massive stars like Cas A end their lives.X-ray: NASA/CXC/Meiji Univ./T. Sato et al.; Image Processing: NASA/CXC/SAO/N. Wolk The inside of a star turned on itself before it spectacularly exploded, according to a new study from NASA’s Chandra X-ray Observatory. Today, this shattered star, known as the Cassiopeia A supernova remnant, is one of the best-known, well-studied objects in the sky.
      Over three hundred years ago, however, it was a giant star on the brink of self-destruction. The new Chandra study reveals that just hours before it exploded, the star’s interior violently rearranged itself. This last-minute shuffling of its stellar belly has profound implications for understanding how massive stars explode and how their remains behave afterwards.
      Cassiopeia A (Cas A for short) was one of the first objects the telescope looked at after its launch in 1999, and astronomers have repeatedly returned to observe it.
      “It seems like each time we closely look at Chandra data of Cas A, we learn something new and exciting,” said Toshiki Sato of Meiji University in Japan who led the study. “Now we’ve taken that invaluable X-ray data, combined it with powerful computer models, and found something extraordinary.”
      As massive stars age, increasingly heavy elements form in their interiors by nuclear reactions, creating onion-like layers of different elements. Their outer layer is mostly made of hydrogen, followed by layers of helium, carbon and progressively heavier elements – extending all the way down to the center of the star. 
      Once iron starts forming in the core of the star, the game changes. As soon as the iron core grows beyond a certain mass (about 1.4 times the mass of the Sun), it can no longer support its own weight and collapses. The outer part of the star falls onto the collapsing core, and rebounds as a core-collapse supernova.
      The new research with Chandra data reveals a change that happened deep within the star at the very last moments of its life. After more than a million years, Cas A underwent major changes in its final hours before exploding.
      “Our research shows that just before the star in Cas A collapsed, part of an inner layer with large amounts of silicon traveled outwards and broke into a neighboring layer with lots of neon,” said co-author Kai Matsunaga of Kyoto University in Japan. “This is a violent event where the barrier between these two layers disappears.”
      This upheaval not only caused material rich in silicon to travel outwards; it also forced material rich in neon to travel inwards. The team found clear traces of these outward silicon flows and inward neon flows in the remains of Cas A’s supernova remnant. Small regions rich in silicon but poor in neon are located near regions rich in neon and poor in silicon. 
      The survival of these regions not only provides critical evidence for the star’s upheaval, but also shows that complete mixing of the silicon and neon with other elements did not occur immediately before or after the explosion. This lack of mixing is predicted by detailed computer models of massive stars near the ends of their lives.
      There are several significant implications for this inner turmoil inside of the doomed star. First, it may directly explain the lopsided rather than symmetrical shape of the Cas A remnant in three dimensions. Second, a lopsided explosion and debris field may have given a powerful kick to the remaining core of the star, now a neutron star, explaining the high observed speed of this object.
      Finally, the strong turbulent flows created by the star’s internal changes may have promoted the development of the supernova blast wave, facilitating the star’s explosion.
      “Perhaps the most important effect of this change in the star’s structure is that it may have helped trigger the explosion itself,” said co-author Hiroyuki Uchida, also of Kyoto University. “Such final internal activity of a star may change its fate—whether it will shine as a supernova or not.”
      These results have been published in the latest issue of The Astrophysical Journal and are available online.
      To learn more about Chandra, visit:
      https://science.nasa.gov/chandra
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of Cassiopeia A, a donut-shaped supernova remnant located about 11,000 light-years from Earth. Included in the image is an inset closeup, which highlights a region with relative abundances of silicon and neon.
      Over three hundred years ago, Cassiopeia A, or Cas A, was a star on the brink of self-destruction. In composition it resembled an onion with layers rich in different elements such as hydrogen, helium, carbon, silicon, sulfur, calcium, and neon, wrapped around an iron core. When that iron core grew beyond a certain mass, the star could no longer support its own weight. The outer layers fell into the collapsing core, then rebounded as a supernova. This explosion created the donut-like shape shown in the composite image. The shape is somewhat irregular, with the thinner quadrant of the donut to the upper left of the off-center hole.
      In the body of the donut, the remains of the star’s elements create a mottled cloud of colors, marbled with red and blue veins. Here, sulfur is represented by yellow, calcium by green, and iron by purple. The red veins are silicon, and the blue veins, which also line the outer edge of the donut-shape, are the highest energy X-rays detected by Chandra and show the explosion’s blast wave.
      The inset uses a different color code and highlights a colorful, mottled region at the thinner, upper left quadrant of Cas A. Here, rich pockets of silicon and neon are identified in the red and blue veins, respectively. New evidence from Chandra indicates that in the hours before the star’s collapse, part of a silicon-rich layer traveled outwards, and broke into a neighboring neon-rich layer. This violent breakdown of layers created strong turbulent flows and may have promoted the development of the supernova’s blast wave, facilitating the star’s explosion. Additionally, upheaval in the interior of the star may have produced a lopsided explosion, resulting in the irregular shape, with an off-center hole (and a thinner bite of donut!) at our upper left.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants Supernovae The Universe Explore More
      6 min read Meet NASA’s Artemis II Moon Mission Masterminds
      Article 22 hours ago 4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 3 days ago 5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
      Scientists have devised a new method for mapping the spottiness of distant stars by using…
      Article 3 days ago View the full article
    • By USH
      NASA’s 1991 Discovery shuttle video shows UFOs making impossible maneuvers, evading a possible Star Wars railgun test. Evidence of secret tech? 

      In September 1991, NASA’s Space Shuttle Discovery transmitted live video that has since become one of the most debated UFO clips ever recorded. The footage, later analyzed by independent researchers, shows glowing objects in orbit performing maneuvers far beyond the limits of known physics. 
      One object appears over Earth’s horizon, drifts smoothly, then suddenly reacts to a flash of light by accelerating at impossible speeds, estimated at over 200,000 mph while withstanding forces of 14,000 g’s. NASA officially dismissed the anomalies as ice particles or debris, but side by side comparisons with actual orbital ice show key differences: the objects make sharp turns, sudden accelerations, and fade in brightness in ways consistent with being hundreds of miles away, not near the shuttle. 
      Image analysis expert Dr. Mark Carlotto confirmed that at least one object was located about 1,700 miles from the shuttle, placing it in Earth’s atmosphere. At that distance, the object would be too large and too fast to be dismissed as ice or space junk. 
      The flash and two streaks seen in the video resemble the Pentagon’s “Brilliant Pebbles” concept, a railgun based missile defense system tested in the early 1990s. Researchers suggest the shuttle cameras may have accidentally, or deliberately, captured a live Star Wars weapons test in orbit. 
      The UFO easily evaded the attack, leading some to conclude that it was powered by a form of hyperdimensional technology capable of altering gravity. 
      Notably, following this 1991 incident, all subsequent NASA shuttle external camera feeds were censored or delayed, raising speculation that someone inside the agency allowed the extraordinary footage to slip out.
        View the full article
  • Check out these Videos

×
×
  • Create New...