Jump to content

5 Things to Know About NASA’s Deep Space Optical Communications


Recommended Posts

  • Publishers
Posted
1-dsoc-collage.jpg
NASA’s DSOC is composed of a flight laser transceiver attached to Psyche and a ground system that will send and receive laser signals. Clockwise from top left: the Psyche spacecraft with DSOC attached, flight laser transceiver, downlink ground station at Palomar, and downlink detector.
NASA/JPL-Caltech

Slated to launch on Oct. 12 with the Psyche mission, DSOC will demonstrate technologies enabling the agency to transmit higher data rates from deep space.

NASA’s pioneering Deep Space Optical Communications (DSOC) experiment will be the first demonstration of laser, or optical, communications from as far away as Mars. Launching with NASA’s Psyche mission to a metal-rich asteroid of the same name on Thursday, Oct. 12, DSOC will test key technologies designed to enable future missions to transmit denser science data and even stream video from the Red Planet.

Here are five things to know about this cutting-edge technology demonstration:

1. DSOC is the first time NASA will test how lasers could increase data transmission from deep space.

Until now, NASA has used only radio waves to communicate with missions that travel beyond the Moon. Much like fiber optics replacing old telephone lines on Earth as demand for data grows, going from radio communications to optical communications will allow increased data rates throughout the solar system, with 10 to 100 times the capacity of state-of-the-art systems currently used by spacecraft. This will better enable future human and robotic exploration missions, along with supporting higher-resolution science instruments.

Learn more about how DSOC will be used to test high-bandwidth data transmission beyond the Moon for the first time – and how it could transform deep space exploration. Credit: NASA/JPL-Caltech

2. The tech demo involves equipment both in space and on Earth.

The DSOC flight laser transceiver is an experiment attached to NASA’s Psyche spacecraft, but Psyche relies on traditional radio communications for mission operations. The laser transceiver features both a near-infrared laser transmitter to send high-rate data to Earth and a sensitive photon-counting camera to receive a laser beam sent from Earth. But the transceiver is just one part of the technology demonstration.

There is no dedicated infrastructure on Earth for deep space optical communications, so for the purposes of DSOC, two ground telescopes have been updated to communicate with the flight laser transceiver. NASA’s Jet Propulsion Laboratory in Southern California will host the operations team, and a high-power near-infrared laser transmitter has been integrated with the Optical Communications Telescope Laboratory at JPL’s Table Mountain facility near Wrightwood, California. The transmitter will deliver a modulated laser signal to DSOC’s flight transceiver and serve as a beacon, or pointing reference, so that the returned laser beam can be accurately aimed back to Earth.

Data sent from the flight transceiver will be collected by the 200-inch (5.1-meter) Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, which has been equipped with a special superconducting high-efficiency detector array.

3. DSOC will encounter unique challenges.

DSOC is intended to demonstrate high-rate transmission of data of distances up to 240 million miles (390 million kilometers) – more than twice the distance between the Sun and Earth – during the first two years of Psyche’s six-year journey to the asteroid belt.  

The farther Psyche travels from our planet, the fainter the laser photon signal will become, making it increasingly challenging to decode the data. As an additional challenge, the photons will take longer to reach their destination, creating a lag of over 20 minutes at the tech demo’s farthest distance. Because the positions of Earth and the spacecraft will be constantly changing as the photons travel, the DSOC ground and flight systems will need to compensate, pointing to where the ground receiver (at Palomar) and flight transceiver (on Psyche) will be when the photons arrive.

4. Cutting-edge technologies will work together to make sure the lasers are on target and high-bandwidth data is received from deep space.

The flight laser transceiver and ground-based laser transmitter will need to point with great precision. Reaching their targets will be akin to hitting a dime from a mile away while the dime is moving. So the transceiver needs to be isolated from the spacecraft vibrations, which would otherwise nudge the laser beam off target. Initially, Psyche will aim the flight transceiver in the direction of Earth while autonomous systems on the flight transceiver assisted by the Table Mountain uplink beacon laser will control the pointing of the downlink laser signal to Palomar Observatory. Integrated onto the Hale Telescope is a cryogenically cooled superconducting nanowire photon-counting array receiver, developed by JPL. The instrument is equipped with high-speed electronics for recording the time of arrival of single photons so that the signal can be decoded. The DSOC team even developed new signal-processing techniques to squeeze information out of the weak laser signals that will have been transmitted over tens to hundreds of millions of miles.

e-2-pia25840-figure-a.jpg
This is a close-up of the downlink detector prototype that was used to develop the detector attached to DSOC’s receiving ground station at Palomar. The active area – at the center of the dark square – measures about 0.0126 inches (0.32 millimeters) across. It can detect a billion photons per second.
NASA/JPL-Caltech

5. This is NASA’s latest optical communications project.

In 2013, NASA’s Lunar Laser Communications Demonstration tested record-breaking uplink and downlink data rates between Earth and the Moon. In 2021, NASA’s Laser Communications Relay Demonstration launched to test high-bandwidth optical communications relay capabilities from geostationary orbit so that spacecraft don’t require a direct line of sight with Earth to communicate. And last year, NASA’s TeraByte InfraRed Delivery system downlinked the highest-ever data rate from a satellite in low-Earth orbit to a ground-based receiver.

DSOC is taking optical communications into deep space, paving the way for high-bandwidth communications beyond the Moon and 1,000 times farther than any optical communications test to date. If it succeeds, the technology could lead to high-data rate communications with streaming, high-definition imagery that will help support humanity’s next giant leap: when NASA sends astronauts to Mars.

More About the Mission

DSOC is the latest in a series of optical communication demonstrations funded by NASA’s Technology Demonstration Missions (TDM) program and the agency’s Space Communications and Navigation (SCaN) program. JPL, a division of Caltech in Pasadena, California, manages DSOC for TDM within NASA’s Space Technology Mission Directorate and SCaN within the agency’s Space Operations Mission Directorate.

The Psyche mission is led by Arizona State University. JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center, is managing the launch service. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

For more information about DSOC, go to: https://www.jpl.nasa.gov/missions/dsoc

News Media Contacts

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

Alise Fisher
NASA Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By Space Force
      The Department of the Air Force achieved 100% of its annual recruitment goal three months ahead of schedule, a testament to the enduring appeal of service and the effectiveness of modernized recruiting strategies.

      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      NASA/Nichole Ayers A SpaceX Dragon spacecraft carrying the Axiom Mission 4 crew docks to the space-facing port of the International Space Station’s Harmony module on June 26. Axiom Mission 4 is the fourth all-private astronaut mission to the orbiting laboratory, welcoming commander Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organisation) astronaut and pilot Shubhanshu Shukla, and mission specialists ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      The crew is scheduled to remain at the space station, conducting microgravity research, educational outreach, and commercial activities, for about two weeks. This mission serves as an example of the success derived from collaboration between NASA’s international partners and American commercial space companies.
      Keep Exploring Discover More Topics From NASA
      Low Earth Orbit Economy
      Humans in Space
      Commercial Space
      Private Astronaut Missions
      View the full article
    • By European Space Agency
      Video: 00:04:13 Daniel Neuenschwander, ESA head of Space and Robotic Exploration, explains that Ignis mission will include an ambitious technological and scientific programme with several experiments led by ESA and proposed by the Polish space industry.
      On 26 June 2025, ESA project astronaut Sławosz Uznański-Wiśniewski from Poland and his crewmates arrived to the International Space Station on the Axiom-4 mission (Ax-4).
      The Polish project astronaut is the second of a new generation of European astronauts to fly on a commercial human spaceflight opportunity with Axiom Space.
      View the full article
  • Check out these Videos

×
×
  • Create New...