Members Can Post Anonymously On This Site
Trio of Galaxies Mix It Up
-
Similar Topics
-
By NASA
3 min read
Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!
The Galaxy Zoo classification interface shows you an image from NASA’s Webb telescope and asks you questions about it. Image credit: Galaxy Zoo, Zooniverse. Inset galaxy: NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay/A. Pagan NASA needs your help identifying the shapes of thousands of galaxies in images taken by our James Webb Space Telescope with the Galaxy Zoo project. These classifications will help scientists answer questions about how the shapes of galaxies have changed over time, what caused these changes, and why. Thanks to the light collecting power of Webb, there are now over 500,000 images of galaxies on website of the Galaxy Zoo citizen science project—more images than scientists can classify by themselves.
“This is a great opportunity to see images from the newest space telescope,” said volunteer Christine Macmillan from Aberdeen, Scotland. “Galaxies at the edge of our universe are being seen for the first time, just as they are starting to form. Just sign up and answer simple questions about the shape of the galaxy that you are seeing. Anyone can do it, ages 10 and up!”
As we look at more distant objects in the universe, we see them as they were billions of years ago because light takes time to travel to us. With Webb, we can spot galaxies at greater distances than ever before. We’re seeing what some of the earliest galaxies ever detected look like, for the first time. The shapes of these galaxies tell us about how they were born, how and when they formed stars, and how they interacted with their neighbors. By looking at how more distant galaxies have different shapes than close galaxies, we can work out which processes were more common at different times in the universe’s history.
At Galaxy Zoo, you’ll first examine an image from the Webb telescope. Then you will be asked several questions, such as ‘Is the galaxy round?’, or ‘Are there signs of spiral arms?’. If you’re quick, you may even be the first person to see the galaxies you’re asked to classify.
“I’m amazed and honored to be one of the first people to actually see these images! What a privilege!” said volunteer Elisabeth Baeten from Leuven, Belgium.
Galaxy Zoo is a citizen science project with a long history of scientific impact. Galaxy Zoo volunteers have been exploring deep space since July 2007, starting with a million galaxies from a telescope in New Mexico called the Sloan Digital Sky Survey and then, moving on to images from space telescopes like NASA’s Hubble Space Telescope and ESA (European Space Agency)’s Euclid telescope. The project has revealed spectacular mergers, taught us about how the black holes at the center of galaxies affect their hosts, and provided insight into how features like spiral arms form and grow.
Now, in addition to adding new data from Webb, the science team has incorporated an AI algorithm called ZooBot, which will sift through the images first and label the ‘easier ones’ where there are many examples that already exist in previous images from the Hubble Space Telescope. When ZooBot is not confident on the classification of a galaxy, perhaps due to complex or faint structures, it will show it to users on Galaxy Zoo to get their human classifications, which will then help ZooBot learn more. Working together, humans and AI can accurately classify limitless numbers of galaxies. The Galaxy Zoo science team acknowledges support from the International Space Sciences Institute (ISSI), who provided funding for the team to get together and work on Galaxy Zoo. Join the project now.
Share
Details
Last Updated Apr 29, 2025 Related Terms
Astrophysics Division Citizen Science Get Involved James Webb Space Telescope (JWST) Explore More
2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light
Article
4 days ago
5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
Article
6 days ago
3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
Article
6 days ago
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s SPHEREx, which will map millions of galaxies across the entire sky, captured one of its first exposures March 27. The observatory’s six detectors each captured one of these uncalibrated images, to which visible-light colors have been added to represent infrared wavelengths. SPHEREx’s complete field of view spans the top three images; the same area of the sky is also captured in the bottom three images. NASA/JPL-Caltech Processed with rainbow hues to represent a range of infrared wavelengths, the new pictures indicate the astrophysics space observatory is working as expected.
NASA’s SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) has turned on its detectors for the first time in space. Initial images from the observatory, which launched March 11, confirm that all systems are working as expected.
Although the new images are uncalibrated and not yet ready to use for science, they give a tantalizing look at SPHEREx’s wide view of the sky. Each bright spot is a source of light, like a star or galaxy, and each image is expected to contain more than 100,000 detected sources.
There are six images in every SPHEREx exposure — one for each detector. The top three images show the same area of sky as the bottom three images. This is the observatory’s full field of view, a rectangular area about 20 times wider than the full Moon. When SPHEREx begins routine science operations in late April, it will take approximately 600 exposures every day.
Each image in this uncalibrated SPHEREx exposure contains about 100,000 light sources, including stars and galaxies. The two insets at right zoom in on sections of one image, showcasing the telescope’s ability to capture faint, distant galaxies. These sections are processed in grayscale rather than visible-light color for ease of viewing.NASA/JPL-Caltech “Our spacecraft has opened its eyes on the universe,” said Olivier Doré, SPHEREx project scientist at Caltech and NASA’s Jet Propulsion Laboratory, both in Southern California. “It’s performing just as it was designed to.”
The SPHEREx observatory detects infrared light, which is invisible to the human eye. To make these first images, science team members assigned a visible color to every infrared wavelength captured by the observatory. Each of the six SPHEREx detectors has 17 unique wavelength bands, for a total of 102 hues in every six-image exposure.
Breaking down color this way can reveal the composition of an object or the distance to a galaxy. With that data, scientists can study topics ranging from the physics that governed the universe less than a second after its birth to the origins of water in our galaxy.
“This is the high point of spacecraft checkout; it’s the thing we wait for,” said Beth Fabinsky, SPHEREx deputy project manager at JPL. “There’s still work to do, but this is the big payoff. And wow! Just wow!”
During the past two weeks, scientists and engineers at JPL, which manages the mission for NASA, have executed a series of spacecraft checks that show all is well so far. In addition, SPHEREx’s detectors and other hardware have been cooling down to their final temperature of around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is necessary because heat can overwhelm the telescope’s ability to detect infrared light, which is sometimes called heat radiation. The new images also show that the telescope is focused correctly. Focusing is done entirely before launch and cannot be adjusted in space.
“Based on the images we are seeing, we can now say that the instrument team nailed it,” said Jamie Bock, SPHEREx’s principal investigator at Caltech and JPL.
How It Works
Where telescopes like NASA’s Hubble and James Webb space telescopes were designed to target small areas of space in detail, SPHEREx is a survey telescope and takes a broad view. Combining its results with those of targeted telescopes will give scientists a more robust understanding of our universe.
The observatory will map the entire celestial sky four times during its two-year prime mission. Using a technique called spectroscopy, SPHEREx will collect the light from hundreds of millions of stars and galaxies in more wavelengths any other all-sky survey telescope.
Track the real-time location of NASA’s SPHEREx space observatory using the agency’s 3D visualization tool, Eyes on the Solar System. When light enters SPHEREx’s telescope, it’s directed down two paths that each lead to a row of three detectors. The observatory’s detectors are like eyes, and set on top of them are color filters, which are like color-tinted glasses. While a standard color filter blocks all wavelengths but one, like yellow- or rose-tinted glasses, the SPHEREx filters are more like rainbow-tinted glasses: The wavelengths they block change gradually from the top of the filter to the bottom.
“I’m rendered speechless,” said Jim Fanson, SPHEREx project manager at JPL. “There was an incredible human effort to make this possible, and our engineering team did an amazing job getting us to this point.”
More About SPHEREx
The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech managed and integrated the instrument. Data will be processed and archived at IPAC at Caltech. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
For more about SPHEREx, visit:
https://science.nasa.gov/mission/spherex/
News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-045
Share
Details
Last Updated Apr 01, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Origin & Evolution of the Universe The Search for Life The Universe Explore More
3 min read Discovery Alert: Four Little Planets, One Big Step
The Discovery Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest…
Article 13 hours ago 5 min read NASA Awards Astrophysics Postdoctoral Fellowships for 2025
The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its…
Article 1 day ago 2 min read Hubble Spots a Chance Alignment
The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC…
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:06:44 The European Space Agency’s Euclid mission has scouted out the three areas in the sky where it will eventually provide the deepest observations of its mission.
In just one week of observations, with one scan of each region so far, Euclid already spotted 26 million galaxies. The farthest of those are up to 10.5 billion light-years away.
In the coming years, Euclid will pass over these three regions tens of times, capturing many more faraway galaxies, making these fields truly ‘deep’ by the end of the nominal mission in 2030.
The first glimpse of 63 square degrees of the sky, the equivalent area of more than 300 times the full Moon, already gives an impressive preview of the scale of Euclid’s grand cosmic atlas when the mission is complete. This atlas will cover one-third of the entire sky – 14 000 square degrees – in this high-quality detail.
Explore the three deep field previews in ESASky:
- Euclid Deep Field South
- Euclid Deep Field Fornax:
- Euclid Deep Field North:
Read more: Euclid opens data treasure trove, offers glimpse of deep fields
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 6 Min Read NASA’s Hubble Finds Kuiper Belt Duo May Be Trio
This artist’s concept depicts one of the possible scenarios for the 148780 Altjira system in the solar system’s Kuiper Belt. Credits:
NASA, ESA, Joseph Olmsted (STScI) The puzzle of predicting how three gravitationally bound bodies move in space has challenged mathematicians for centuries, and has most recently been popularized in the novel and television show “3 Body Problem.” There’s no problem, however, with what a team of researchers say is likely a stable trio of icy space rocks in the solar system’s Kuiper Belt, found using data from NASA’s Hubble Space Telescope and the ground-based W. M. Keck Observatory in Hawaii.
If confirmed as the second such three-body system found in the region, the 148780 Altjira system suggests there could be similar triples waiting to be discovered, which would support a particular theory of our solar system’s history and the formation of Kuiper Belt objects (KBOs).
“The universe is filled with a range of three-body systems, including the closest stars to Earth, the Alpha Centauri star system, and we’re finding that the Kuiper Belt may be no exception,” said the study’s lead author Maia Nelsen, a physics and astronomy graduate of Brigham Young University in Provo, Utah.
Known since 1992, KBOs are primitive icy remnants from the early solar system found beyond the orbit of Neptune. To date, over 3,000 KBOs have been cataloged, and scientists estimate there could be several hundred thousand more that measure over 10 miles in diameter. The largest KBO is dwarf planet Pluto.
The Hubble finding is crucial support for a KBO formation theory, in which three small rocky bodies would not be the result of collision in a busy Kuiper Belt, but instead form as a trio directly from the gravitational collapse of matter in the disk of material surrounding the newly formed Sun, around 4.5 billion years ago. It’s well known that stars form by gravitational collapse of gas, commonly as pairs or triples, but that idea that cosmic objects like those in the Kuiper Belt form in a similar way is still under investigation.
This artist’s concept depicts one of the possible scenarios for the 148780 Altjira system in the solar system’s Kuiper Belt. It is likely a hierarchical triple formation, in which two very close companions are orbited by a third member at a greater distance. The inner bodies are too close together to be resolved by the Hubble Space Telescope. But Hubble observations of the orbit of the outermost object were used to determine that the central body is not a single spherical object. Other possibilities are that the inner object is a contact binary, where two separate bodies become so close they touch each other. Another idea is that the central body is oddly flat, like a pancake. Of the 40 identified binary objects in the Kuiper Belt, another system, Lempo, has been found to be a triple. The Altjira system is located in the outer reaches of the solar system, 3.7 billion miles away, or 44 times the distance between Earth and the Sun. In this artist’s concept, our Sun is in the constellation Sagittarius, with the Milky Way in the background. The bright red star Antares appears at the top center. Dust in the plane of our solar system glows as zodiacal light. NASA, ESA, Joseph Olmsted (STScI) The Altjira system is located in the outer reaches of the solar system, 3.7 billion miles away, or 44 times the distance between Earth and the Sun. Hubble images show two KBOs located about 4,700 miles (7,600 kilometers) apart. However, researchers say that repeated observations of the objects’ unique co-orbital motion indicate the inner object is actually two bodies that are so close together they can’t be distinguished at such a great distance.
“With objects this small and far away, the separation between the two inner members of the system is a fraction of a pixel on Hubble’s camera, so you have to use non-imaging methods to discover that it’s a triple,” said Nelsen.
This takes time and patience, Nelsen explained. Scientists have gathered a 17-year observational baseline of data from Hubble and the Keck Observatory, watching the orbit of the Altjira system’s outer object.
“Over time, we saw the orientation of the outer object’s orbit change, indicating that the inner object was either very elongated or actually two separate objects,” said Darin Ragozzine, also of Brigham Young University, a co-author of the Altjira study.
“A triple system was the best fit when we put the Hubble data into different modeling scenarios,” said Nelsen. “Other possibilities are that the inner object is a contact binary, where two separate bodies become so close they touch each other, or something that actually is oddly flat, like a pancake.”
Currently, there are about 40 identified binary objects in the Kuiper Belt. Now, with two of these systems likely triples, the researchers say it is more likely they are looking not at an oddball, but instead a population of three-body systems, formed by the same circumstances. However, building up that evidence takes time and repeated observations.
Recent research using data from the Keck Observatory and NASA’s Hubble Space Telescope has revealed a potential three-body system in the Kuiper Belt, known as the Altjira system. This discovery challenges traditional collision theories by suggesting that these triple systems might form directly from the gravitational collapse of material in the early solar disk.
Nasa’s Goddard Space Flight Center; Producer: Paul Morris The only Kuiper Belt objects that have been explored in detail are Pluto and the smaller object Arrokoth, which NASA’s New Horizons mission visited in 2015 and 2019, respectively. New Horizons showed that Arrokoth is a contact binary, which for KBOs means that two objects that have moved closer and closer to one another are now touching and/or have merged, often resulting in a peanut shape. Ragozzine describes Altjira as a “cousin” of Arrokoth, a member of the same group of Kuiper Belt objects. They estimate Altjira is 10 times larger than Arrokoth, however, at 124 miles (200 kilometers) wide.
While there is no mission planned to fly by Altjira to get Arrokoth-level detail, Nelsen said there is a different upcoming opportunity for further study of the intriguing system. “Altjira has entered an eclipsing season, where the outer body passes in front of the central body. This will last for the next ten years, giving scientists a great opportunity to learn more about it,” Nelsen said. NASA’s James Webb Space Telescope is also joining in on the study of Altjira as it will check if the components look the same in its upcoming Cycle 3 observations.
The Hubble study is published in The Planetary Science Journal.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, Maryland
Leah Ramsay
Space Telescope Science Institute, Baltimore, Maryland
Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
Share
Details
Last Updated Mar 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Science The Kuiper Belt Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Uncovering Icy Objects in the Kuiper Belt
Hubble’s Night Sky Challenge
Reshaping Our Cosmic View: Hubble Science Highlights
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4468-4470: A Wintry Mix of Mars Science
NASA’s Mars rover Curiosity captured this image showing its wheel awkwardly perched atop one of the rocks in this location, as well as the textures of the layered sulfate unit bedrock blocks. The rover used its Left Navigation Camera (Navcam), one of a pair of stereo cameras on either side of the rover’s masthead, to record the image on Feb. 28, 2025, on sol 4466, or Martian day 4,466 of the Mars Science Laboratory mission, at 00:34:10 UTC. NASA/JPL-Caltech Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
Earth planning date: Friday, Feb. 28, 2025
Curiosity continues to climb roughly southward through the layered sulfate strata toward the “boxwork” features. Although the previous plan’s drive successfully advanced the rover roughly 21 meters southward (about 69 feet), the drive had ended with an awkwardly perched wheel. Because of this, unfortunately it was considered too risky to unstow the arm for contact science in this plan.
Nevertheless the team made the most of the imaging and LIBS observations available from the rover’s current location. A large Mastcam mosaic was planned on the nearby Texoli butte to capture its sedimentary structures from the rover’s new perspective. Toward the west, the boxwork strata exposed on “Gould Mesa” were observed using the ChemCam long-distance imaging capability, with Mastcam providing color context.
Several near-field Mastcam mosaics also captured some bedding and diagenetic structure in the nearby blocks as well as some modern aeolian troughs in the finer-grained material around them.
On the nearby blocks, two representative local blocks (“Gabrelino Trail” and “Sespe Creek”) are to be “zapped” with the ChemCam laser to give us LIBS (laser-induced breakdown spectroscopy) compositional measurements. The original Gabrelino Trail on Earth near the JPL campus is currently closed due to damage from the recent wildfires.
Meanwhile, the season on Mars (L_s ~ 50, or a solar longitude of about 50 degrees, heading into southern winter) has brought with it the opportunity to observe some recurring atmospheric phenomena: It’s aphelion cloud belt season, as well as Hadley cell transition season, during which a more southerly air mass crosses over Gale Crater.
This plan includes an APXS atmospheric observation (no arm movement required!) to measure argon and a ChemCam passive-sky observation to measure O2, which is a small (less than 1%) but measurable component in the Martian atmosphere. Dedicated cloud altitude observations, a phase function sky survey, and zenith and suprahorizon movies have also been included in the plan to characterize the clouds. As usual, the rover also continues to monitor the modern environment with measurements of atmospheric opacity via imaging, temperature, and humidity with REMS, and the local neutron environment with DAN.
Share
Details
Last Updated Mar 04, 2025 Related Terms
Blogs Explore More
2 min read Smooshing for Science: A Flat-Out Success
Article
3 days ago
4 min read Sols 4466-4468: Heading Into the Small Canyon
Article
5 days ago
2 min read Sols 4464-4465: Making Good Progress
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.