Members Can Post Anonymously On This Site
Take 5 with Brad Zavodsky
-
Similar Topics
-
By Space Force
A nationwide reading program was created to encourage kindergarten through eighth-grade students to read 12 books during the summer break.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
One of the navigation cameras on NASA’s Perseverance captured the rover’s tracks coming from an area called “Witch Hazel Hill,” on May 13, 2025, the 1,503rd Martian day, or sol, of the mission. NASA/JPL-Caltech Scientists expect the new area of interest on the lower slope of Jezero Crater’s rim to offer up some of the oldest rocks on the Red Planet.
NASA’s Perseverance Mars rover is exploring a new region of interest the team is calling “Krokodillen” that may contain some of the oldest rocks on Mars. The area has been on the Perseverance science team’s wish list because it marks an important boundary between the oldest rocks of Jezero Crater’s rim and those of the plains beyond the crater.
“The last five months have been a geologic whirlwind,” said Ken Farley, deputy project scientist for Perseverance from Caltech in Pasadena. “As successful as our exploration of “Witch Hazel Hill” has been, our investigation of Krokodillen promises to be just as compelling.”
Named by Perseverance mission scientists after a mountain ridge on the island of Prins Karls Forland, Norway, Krokodillen (which means “the crocodile” in Norwegian) is a 73-acre (about 30-hectare) plateau of rocky outcrops located downslope to the west and south of Witch Hazel Hill.
A quick earlier investigation into the region revealed the presence of clays in this ancient bedrock. Because clays require liquid water to form, they provide important clues about the environment and habitability of early Mars. The detection of clays elsewhere within the Krokodillen region would reinforce the idea that abundant liquid water was present sometime in the distant past, likely before Jezero Crater was formed by the impact of an asteroid. Clay minerals are also known on Earth for preserving organic compounds, the building blocks of life.
“If we find a potential biosignature here, it would most likely be from an entirely different and much earlier epoch of Mars evolution than the one we found last year in the crater with ‘Cheyava Falls,’” said Farley, referring to a rock sampled in July 2024 with chemical signatures and structures that could have been formed by life long ago. “The Krokodillen rocks formed before Jezero Crater was created, during Mars’ earliest geologic period, the Noachian, and are among the oldest rocks on Mars
Data collected from NASA’s Mars orbiters suggest that the outer edges of Krokodillen may also have areas rich in olivine and carbonate. While olivine forms from magma, carbonate minerals on Earth typically form during a reaction in liquid water between rock and dissolved carbon dioxide. Carbonate minerals on Earth are known to be excellent preservers of fossilized ancient microbial life and recorders of ancient climate.
The rover, which celebrated its 1,500th day of surface operations on May 9, is currently analyzing a rocky outcrop in Krokodillen called “Copper Cove” that may contain Noachian rocks.
Ranking Mars Rocks
The rover’s arrival at Krokodillen comes with a new sampling strategy for the nuclear-powered rover that allows for leaving some cored samples unsealed in case the mission finds a more scientifically compelling geologic feature down the road.
To date, Perseverance has collected and sealed two regolith (crushed rock and dust) samples, three witness tubes, and one atmospheric sample. It has also collected 26 rock cores and sealed 25 of them. The rover’s one unsealed sample is its most recent, a rock core taken on April 28 that the team named “Bell Island,” which contains small round stones called spherules. If at some point the science team decides a new sample should take its place, the rover could be commanded to remove the tube from its bin in storage and dump the previous sample.
“We have been exploring Mars for over four years, and every single filled sample tube we have on board has its own unique and compelling story to tell,” said Perseverance acting project scientist Katie Stack Morgan of NASA’s Jet Propulsion Laboratory in Southern California. “There are seven empty sample tubes remaining and a lot of open road in front of us, so we’re going to keep a few tubes — including the one containing the Bell Island core — unsealed for now. This strategy allows us maximum flexibility as we continue our collection of diverse and compelling rock samples.”
Before the mission adopted its new strategy, the engineering sample team assessed whether leaving a tube unsealed could diminish the quality of a sample. The answer was no.
“The environment inside the rover met very strict standards for cleanliness when the rover was built. The tube is also oriented in such a way within its individual storage bin that the likelihood of extraneous material entering the tube during future activities, including sampling and drives, is very low,” said Stack Morgan.
In addition, the team assessed whether remnants of a sample that was dumped could “contaminate” a later sample. “Although there is a chance that any material remaining in the tube from the previous sample could come in contact with the outside of a new sample,” said Stack Morgan, “it is a very minor concern — and a worthwhile exchange for the opportunity to collect the best and most compelling samples when we find them.”
News Media Contact
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-071
Share
Details
Last Updated May 19, 2025 Related Terms
Perseverance (Rover) Jet Propulsion Laboratory Mars Explore More
6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
Article 4 days ago 6 min read NASA Observes First Visible-light Auroras at Mars
On March 15, 2024, near the peak of the current solar cycle, the Sun produced…
Article 5 days ago 6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
ViewSpace currently offers three Image Tours, and the collection will continue growing:
Center of the Milky Way Galaxy:
Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
Herbig-Haro 46/47:
Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
The Whirlpool Galaxy:
Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
“The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share
Details
Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Astrophysics For Educators Explore More
5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
Article
1 day ago
2 min read Hubble Comes Face-to-Face with Spiral’s Arms
Article
4 days ago
7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
Article
5 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The 2025 internship class at NASA’s Armstrong Flight Research Center in Edwards, California, stand in front of the historic X-1E aircraft on display at the center. From left are interns: Tyler Requa, Gokul Nookula, Madeleine Phillips, Oscar Keiloht Chavez Ramirez, and Nicolas Marzocchetti.NASA/Steve Freeman Lee esta historia en español aquí.
Do you dream of working for NASA and contributing to exploration and innovation for the benefit of humanity? The agency’s internship programs provide high school and college students opportunities to advance NASA’s mission in aeronautics, science, technology, and space.
Claudia Sales, Kassidy McLaughlin, and Julio Treviño started their careers as interns at NASA’s Armstrong Flight Research Center in Edwards, California, where they continue to explore the secrets of the universe. Their journeys highlight the long-term impact of the NASA’s science, technology, engineering, and mathematics (STEM) programs.
Claudia Sales, NASA’s acting X-59 deputy chief engineer and airworthiness certification lead for the quiet supersonic research aircraft, supports ground testing for Acoustic Research Measurements (ARM) flights. The test campaign to evaluate technologies that reduce aircraft noise was conducted at NASA’s Armstrong Flight Research Center in Edwards, California, in 2018.NASA/Ken Ulbrich Claudia Sales
“I knew since I was a child that I wanted to work for NASA,” said Claudia Sales, acting X-59 deputy chief engineer X-59 deputy chief engineer and airworthiness certification lead for the agency’s quiet supersonic research aircraft.
Sales’ journey at NASA started in 2005 as a Pathways intern, a NASA work-study (co-op) program. She worked in propulsion and structures branches and supported such projects as the X-43A hypersonic research aircraft (Hyper-X) and the X-37 reusable orbital launch vehicle, where she had the opportunity to perform calculations for thermal estimations and trajectory analyses. She also completed design work with NASA Armstrong’s Experimental Fabrication Shop.
“It had been a dream of mine to be a part of unique, one-of-a-kind flight research projects,” Sales said. “My mentor was amazing at exposing me to a wide variety of experiences and working on something unique to one day be implemented on an air vehicle to make the world a better place.”
Claudia Sales, NASA’s acting X-59 deputy chief engineer and airworthiness certification lead for the quiet supersonic research aircraft, stands in front of a Gulfstream G-III, also known as Subsonic Research Aircraft Testbed (SCRAT). Sales supported ground testing as test conductor for Acoustics Research Measurements (ARM) flights at NASA’s Armstrong Research Flight Center in Edwards, California, in 2018.NASA/Ken Ulbrich NASA’s flight systems engineer, Kassidy Mclaughlin conducts environmental testing on an instrumentation pallet. The pallet was used during NASA’s National Campaign project in 2020 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Lauren Hughes Kassidy McLaughlin
Similarly, flight systems engineer Kassidy McLaughlin discovered that mentorship and hands-on experience as an intern were key to her professional development. She currently leads the development of a ground control station at NASA Armstrong.
In high school and college, McLaughlin enrolled in STEM classes, knowing she wanted to pursue a career in engineering. Encouraged by her mother to apply for a NASA internship, McLaughlin’s career began in 2014 as an intern for NASA Armstrong’s Office of STEM Engagement. She later transitioned to the Pathways program.
“My mentor gave me the tools necessary, and encouraged me to ask questions,” McLaughlin said. “He helped show me that I was capable of anything if I set my mind to it.”
During five rotations as an intern, she worked on the Unmanned Aircraft Systems Integration in the National Airspace System (UAS in the NAS) project. “It is such a rewarding feeling to be in a control room when something you have worked on is flying,” McLaughlin said. That experience inspired her to pursue a career in mechanical engineering.
“NASA Armstrong offered something special when it came to the people,” McLaughlin said. “The culture at the center is so friendly and everyone is so welcoming.”
Julio Treviño, lead operations engineer for NASA’s Global Hawk SkyRange project, stands in front of an F/A-18 mission support aircraft at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Joshua Fisher Julio Treviño
Julio Treviño, lead operations engineer for NASA’s Global Hawk SkyRange project, ensures airworthiness throughout the planning, integration, and flight phases of unique systems and vehicles. He is also a certified mission controller, mission director, and flight test engineer for various agency aircraft.
Much like McLaughlin, Treviño began his journey in 2018 as a Pathway’s intern for the Dynamic and Controls branch at NASA Armstrong. That experience paved the way for success after graduating with a degree in mechanical engineering.
“As an intern, I had the opportunity to work on designing and creating a battery model for an all-electric aircraft,” Treviño said. “It was officially published as a NASA software model for use by anyone throughout the agency.”
Treviño also credits NASA’s culture and people as the best part of his internship. “I had very supportive mentors throughout my time as an intern and the fact that everyone here genuinely loves the work that they do is awesome,” he said.
2025 Application Deadlines
Every year, NASA provides more than 2,000 students the opportunity to impact the agency’s mission through hands-on internships. The 2025 application for fall is May 16, 2025.
To learn more about NASA’s internship programs, application deadlines, and eligibility, visit https://www.nasa.gov/learning-resources/internship-programs/
Share
Details
Last Updated May 12, 2025 EditorDede DiniusContactPriscila Valdezpriscila.valdez@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Internships STEM Engagement at NASA Explore More
3 min read 5 Tips to Craft a Standout NASA Internship Application
Article 7 hours ago 3 min read NASA STEM Programs Ignite Curiosity Beyond the Classroom
Article 2 weeks ago 4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.