Members Can Post Anonymously On This Site
Grey Alien photographed walking alongside river in Tarija, Bolivia?
-
Similar Topics
-
By USH
In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology.
With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure.
The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most.
00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
View the full article
-
By NASA
Explore This SectionScience Europa Clipper Alien Ocean Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Could a liquid water ocean beneath the surface of Jupiter’s moon Europa have the ingredients to support life? Here’s how NASA’s mission to Europa would find out. Keep Exploring Discover More Topics From NASA
Europa Clipper Resources
Jupiter
Jupiter Moons
Science Missions
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The SWOT satellite is helping scientists size up flood waves on waterways like the Yellowstone River, pictured here in October 2024 in Montana. SWOT measures the height of surface waters, including the ocean, and hundreds of thousands of rivers, lakes, and reservoirs in the U.S. alone.NPS In a first, researchers from NASA and Virginia Tech used satellite data to measure the height and speed of potentially hazardous flood waves traveling down U.S. rivers. The three waves they tracked were likely caused by extreme rainfall and by a loosened ice jam. While there is currently no database that compiles satellite data on river flood waves, the new study highlights the potential of space-based observations to aid hydrologists and engineers, especially those working in communities along river networks with limited flood control structures such as levees and flood gates.
Unlike ocean waves, which are ordinarily driven by wind and tides, and roll to shore at a steady clip, river waves (also called flood or flow waves) are temporary surges stretching tens to hundreds of miles. Typically caused by rainfall or seasonal snowmelt, they are essential to shuttling nutrients and organisms down a river. But they can also pose hazards: Extreme river waves triggered by a prolonged downpour or dam break can produce floods.
“Ocean waves are well known from surfing and sailing, but rivers are the arteries of the planet. We want to understand their dynamics,” said Cedric David, a hydrologist at NASA’s Jet Propulsion Laboratory in Southern California and a coauthor of a new study published May 14 in Geophysical Research Letters.
SWOT is depicted in orbit in this artist’s concept, with sunlight glinting off one of its solar panels and both antennas of its key instrument — the Ka-band Radar Interferometer (KaRIn) — extended. The antennas collect data along a swath 30 miles (50 kilometers) wide on either side of the satellite.CNES Measuring Speed and Size
To search for river waves for her doctoral research, lead author Hana Thurman of Virginia Tech turned to a spacecraft launched in 2022. The SWOT (Surface Water and Ocean Topography) satellite is a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales). It is surveying the height of nearly all of Earth’s surface waters, both fresh and salty, using its sensitive Ka-band Radar Interferometer (KaRIn). The instrument maps the elevation and width of water bodies by bouncing microwaves off the surface and timing how long the signal takes to return.
“In addition to monitoring total storage of waters in lakes and rivers, we zoom in on dynamics and impacts of water movement and change,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
Thurman knew that SWOT has helped scientists track rising sea levels near the coast, spot tsunami slosh, and map the seafloor, but could she identify river height anomalies in the data indicating a wave on the move?
She found that the mission had caught three clear examples of river waves, including one that arose abruptly on the Yellowstone River in Montana in April 2023. As the satellite passed overhead, it observed a 9.1-foot-tall (2.8-meter-tall) crest flowing toward the Missouri River in North Dakota. It was divided into a dramatic 6.8-mile-long (11-kilometer-long) peak followed by a more drawn‐out tail. These details are exciting to see from orbit and illustrate the KaRIn instrument’s uniquely high spatial resolution, Thurman said.
Sleuthing through optical Sentinel-2 imagery of the area, she determined that the wave likely resulted from an ice jam breaking apart upstream and releasing pent-up water.
The other two river waves that Thurman and the team found were triggered by rainfall runoff. One, spotted by SWOT starting on Jan. 25, 2024, on the Colorado River south of Austin, Texas, was associated with the largest flood of the year on that section of river. Measuring over 30 feet (9 meters) tall and 166 miles (267 kilometers) long, it traveled around 3.5 feet (1.07 meters) per second for over 250 miles (400 kilometers) before discharging into Matagorda Bay.
The other wave originated on the Ocmulgee River near Macon, Georgia, in March 2024. Measuring over 20 feet (6 meters) tall and extending more than 100 miles (165 kilometers), it traveled about a foot (0.33 meters) per second for more than 124 miles (200 kilometers).
“We’re learning more about the shape and speed of flow waves, and how they change along long stretches of river,” Thurman said. “That could help us answer questions like, how fast could a flood get here and is infrastructure at risk?”
Complementary Observations
Engineers and water managers measuring river waves have long relied on stream gauges, which record water height and estimate discharge at fixed points along a river. In the United States, stream gauge networks are maintained by agencies including the U.S. Geological Survey. They are sparser in other parts of the world.
“Satellite data is complementary because it can help fill in the gaps,” said study supervisor George Allen, a hydrologist and remote sensing expert at Virginia Tech.
If stream gauges are like toll booths clocking cars as they pass, SWOT is like a traffic helicopter taking snapshots of the highway.
The wave speeds that SWOT helped determine were similar to those calculated using gauge data alone, Allen said, showing how the satellite could help monitor waves in river basins without gauges. Knowing where and why river waves develop can help scientists tracking changing flood patterns around the world.
Orbiting Earth multiple times each day, SWOT is expected to observe some 55% of large-scale floods at some stage in their life cycle. “If we see something in the data, we can say something,” David said of SWOT’s potential to flag dangerous floods in the making. “For a long time, we’ve stood on the banks of our rivers, but we’ve never seen them like we are now.”
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
Written by Sally Younger
2025-074
Share
Details
Last Updated May 21, 2025 Related Terms
SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Explore More
3 min read Devil’s in Details in Selfie Taken by NASA’s Mars Perseverance Rover
Article 2 hours ago 5 min read NASA’s Perseverance Mars Rover to Take Bite Out of ‘Krokodillen’
Article 2 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
The Curiosity rover continues to capture fascinating anomalies on the Martian surface. In this instance, researcher Jean Ward has examined a particularly intriguing discovery: a disc-shaped object embedded in the side of a mound or hill.
The images were taken by the Curiosity rover’s Mast Camera (Mastcam) on April 30, 2025 (Sol 4526). To improve clarity, Ward meticulously removed the grid overlay from the photographs, enhancing the visibility of the object.
To provide better spatial context for the disc’s location, Ward assembled two of the images into a collage. In the composite, you can see the surrounding area including a ridge, and the small mound where the disc appears partially embedded, possibly near the entrance of an opening.
The next image offers the clearest view of the anomaly. Ward again removed the grid overlay and subtly enhanced the contrast to bring out finer details, as the original image appeared overly bright and washed out.
In the close-up, displayed at twice the original scale, the smooth arc of the disc is distinctly visible. Its texture seems unusual, resembling stone or a slab-like material, flat yet with a defined curvature.
Might this disc-like structure have been engineered as a gateway, part of a hidden entrance leading to an architectural complex embedded within the hillside, hinting at a long-forgotten subterranean stronghold once inhabited by an extraterrestrial civilization?
Links original NASA images: https://mars.nasa.gov/raw_images/1461337/ https://mars.nasa.gov/raw_images/1461336/https://mars.nasa.gov/raw_images/1461335/
View the full article
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Navigating a Slanted River
Finessing a fractured rock: NASA’s Mars Perseverance rover acquired this image showing the “Slants River” target, which fractured after being abraded by the rover. Perseverance captured the image using its SHERLOC WATSON camera, located on the turret at the end of the rover’s robotic arm. SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) is an instrument using cameras, spectrometers, and a laser to search for organics and minerals that have been altered by watery environments and may be signs of past microbial life. In addition to its black-and-white context camera, SHERLOC is assisted by WATSON (Wide Angle Topographic Sensor for Operations and eNgineering), a color camera for taking close-up images of rock grains and surface textures. In the case of Slants River, thanks to work by the team’s rover planners and engineers, in spite of the fracture SHERLOC was able to maneuver close to this topographically-challenging surface and conduct a spectroscopy scan. This important activity enabled the team to collect the Main River core, just next to this abrasion patch. Perseverance acquired this image on March 5, 2025 — sol 1436, or Martian day 1,436 of the Mars 2020 mission — at the local mean solar time of 14:29:29. NASA/JPL-Caltech Written by Denise Buckner, student collaborator at University of Florida
Perseverance is hard at work on Mars, overcoming obstacles for scientific exploration! Just a few sols after successfully sealing the challenging Green Gardens core, Perseverance roved on to the Broom Point workspace to collect another sample called Main River. Broom Point is situated a few hundred meters down-slope from where Green Gardens was collected, and the Science Team chose to explore this area because orbiter images show some intriguing, alternating light and dark layers.
Upon reaching the workspace, images captured by Perseverance confirm that these distinct layers are visible on the ground, as well. Layers are interesting because they record different geological events that occurred in the planet’s past, which may include deposition of sediments, lava flows, or volcanic ash. By conducting proximity science with rover instruments and collecting a core to return to Earth for future analyses, the team is investigating what this material is composed of and how it was emplaced.
When the team is planning to collect a sample from an outcrop, the first step is to abrade the rock, grinding away the top few millimeters and smoothing out the surface so the SHERLOC and PIXL instruments can move in and conduct their scans. Although Perseverance has abraded more than 30 rocks across Jezero crater, new rocks still present unique challenges. While abrading the Slants River target at Broom Point, the rock unexpectedly fractured, resulting in an uneven surface. SHERLOC and PIXL require just a few millimeters of clearance to safely approach the rock, and while PIXL was able to reach the broken surface, the topography looked a little more dicey for SHERLOC.
The team’s engineers and rover planners took stock of the situation and decided to use WATSON, SHERLOC’s companion camera, to snap some images of the abrasion patch from another angle. These images built a surface model of the small cracks and crevices, and with this knowledge in hand, the team found a way to safely maneuver the instrument to the same spot that PIXL scanned, and collected a co-located spectroscopy map. Once this abrasion proximity science was completed, the rover went on to drill and seal the Main River core, an activity that went off without a hitch.
With another core in the bag, Perseverance is off to the next workspace, ready to tackle whatever challenges may lie ahead!
Share
Details
Last Updated Mar 13, 2025 Related Terms
Blogs Explore More
2 min read Sols 4477-4478: Bumping Back to Business
Article
1 day ago
3 min read Sols 4475-4476: Even the Best-Laid Plans
Article
2 days ago
2 min read Sealing the Deal
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.