Jump to content

NASA

Publishers
  • Posts

    6,060
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. This map depicts global temperature anomalies for meteorological summer in 2024 (June, July, and August). It shows how much warmer or cooler different regions of Earth were compared to the baseline average from 1951 to 1980. (Credit: NASA/NOAA) Climate researchers from NASA and NOAA (National Oceanic and Atmospheric Administration) will release their annual assessments of global temperatures and discuss the major climate trends of 2024 during a media briefing at 12 p.m. EST Friday, Jan. 10. NASA will share the briefing on the agency’s website at: https://www.nasa.gov/live. Participants will include: Gavin Schmidt, director, NASA’s Goddard Institute for Space Studies Russ Vose, chief, Monitoring and Assessment Branch, NOAA National Centers for Environmental Information Media interested in participating must RSVP to NOAA by the time of the event. NASA and NOAA are stewards of global temperature data and independently produce a record of Earth’s surface temperatures and changes based on historical observations over land and ocean. For more information about NASA’s Earth science programs, visit: https://www.nasa.gov/earth -end- Liz Vlock Headquarters, Washington 202-358-1600 elizabeth.a.vlock@nasa.gov Peter Jacobs Goddard Space Flight Center, Greenbelt, Maryland 301-286-0535 peter.jacobs@nasa.gov View the full article
  2. 4 Min Read Lagniappe for January 2025 Explore the January 2025 issue, highlighting the year in review at NASA Stennis, and how to become a NASA test conductor at the official visitor center and more! Explore Lagniappe for January 2025 featuring: NASA Stennis Celebrates Key Testing, Operations Milestones in 2024 NASA Exhibit Puts Visitors in Test Conductor Seat NASA Stennis Hosts Mississippi Kween Gator Speaks Gator SpeaksNASA/Stennis This time of year is one Gator enjoys. The ending of one year and beginning of another provides the opportunity to reflect, reset, and refocus. This is true at NASA Stennis, a place that powers space dreams, or for someone who enjoys staying up to date with all the happenings around NASA Stennis – you! In 2024, Gator witnessed the legacy of excellence continue at the south Mississippi NASA center. There were milestones reached with RS-25 engine testing and preparations for testing NASA’s new exploration upper stage for future Artemis missions, the center continued to fuel the space market with its support of commercial companies at the E Test Complex, and it was announced the historic in-space payload mission for the NASA Stennis Autonomous Systems Laboratory team would continue. Another bright spot at NASA Stennis is range operations. The partnership between NASA Stennis and Skydweller Aero represents the first big step in this area. In 2024, NASA Stennis entered into an agreement with Skydweller Aero for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace. It marks the first agreement between NASA Stennis and a commercial company to use the center’s unique capabilities to support testing and operation of uncrewed systems. The future is indeed bright. The new year is like the NASA Stennis buffer zone. The 125,000-plus acre buffer zone enables many opportunities for site achievement and advancement, much like a new year does. We all can make 2025 the best year to date by building on what we have accomplished and setting bold, new goals. Here is to 2025 – a year of focus, ambition, and collaboration. Together, we can turn our goals into achievements and make this year one of our best yet. Happy New Year! > Back to Top NASA Stennis Top News NASA Stennis Celebrates Key Testing, Operations Milestones in 2024 NASA’s Stennis Space Center near Bay St. Louis, Mississippi, celebrated propulsion testing and site operations milestones in 2024, all while inspiring the Artemis Generation and welcoming new leadership that will help NASA Stennis innovate and grow into the future. Read more about key milestones from 2024 NASA Exhibit Puts Visitors in Test Conductor Seat NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center. Read more about the engine test simulator exhibit > Back to Top Center Activities NASA Stennis Hosts Mississippi Kween Cookbook author and culinary content creator Caroline Davis, popularly known as Mississippi Kween, and her family enjoy touring facilities and learning about NASA Stennis and its frontline work during a site visit Dec. 18. Davis, husband Joe, and children Zeke and Zoey, met with NASA Stennis leadership before touring the L3Harris (formerly Aerojet Rocketdyne) Engine Assembly Facility, Thad Cochran Test Stand, Autonomous Systems Laboratory, and the NASA Stennis rocket engine garden. The tour highlighted the NASA Stennis story and how the south Mississippi NASA center has the ingredients for a recipe that accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to stimulate the economy.NASA/Danny Nowlin Cookbook author and culinary content creator Caroline Davis, popularly known as Mississippi Kween, and her family enjoy touring facilities and learning about NASA Stennis and its frontline work during a site visit Dec. 18. Davis, husband Joe, and children Zeke and Zoey, met with NASA Stennis leadership before touring the L3Harris (formerly Aerojet Rocketdyne) Engine Assembly Facility, Thad Cochran Test Stand, Autonomous Systems Laboratory, and the NASA Stennis rocket engine garden. The tour highlighted the NASA Stennis story and how the south Mississippi NASA center has the ingredients for a recipe that accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to stimulate the economy.NASA/Danny Nowlin Cookbook author and culinary content creator Caroline Davis, popularly known as Mississippi Kween, and her family enjoy touring facilities and learning about NASA Stennis and its frontline work during a site visit Dec. 18. Davis, husband Joe, and children Zeke and Zoey, met with NASA Stennis leadership before touring the L3Harris (formerly Aerojet Rocketdyne) Engine Assembly Facility, Thad Cochran Test Stand, Autonomous Systems Laboratory, and the NASA Stennis rocket engine garden. The tour highlighted the NASA Stennis story and how the south Mississippi NASA center has the ingredients for a recipe that accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to stimulate the economy.NASA/Danny Nowlin Cookbook author and culinary content creator Caroline Davis, popularly known as Mississippi Kween, and her family enjoy touring facilities and learning about NASA Stennis and its frontline work during a site visit Dec. 18. Davis, husband Joe, and children Zeke and Zoey, met with NASA Stennis leadership before touring the L3Harris (formerly Aerojet Rocketdyne) Engine Assembly Facility, Thad Cochran Test Stand, Autonomous Systems Laboratory, and the NASA Stennis rocket engine garden. The tour highlighted the NASA Stennis story and how the south Mississippi NASA center has the ingredients for a recipe that accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to stimulate the economy.NASA/Danny Nowlin Cookbook author and culinary content creator Caroline Davis, popularly known as Mississippi Kween, and her family enjoy touring facilities and learning about NASA Stennis and its frontline work during a site visit Dec. 18. Davis, husband Joe, and children Zeke and Zoey, met with NASA Stennis leadership before touring the L3Harris (formerly Aerojet Rocketdyne) Engine Assembly Facility, Thad Cochran Test Stand, Autonomous Systems Laboratory, and the NASA Stennis rocket engine garden. The tour highlighted the NASA Stennis story and how the south Mississippi NASA center has the ingredients for a recipe that accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to stimulate the economy.NASA/Danny Nowlin SLS Rocket on Display at Governor’s Mansion A model of NASA’s SLS (Space Launch System) rocket is part of the holiday display in the Mississippi Governor’s Mansion in Jackson, the official residence of state Gov. Tate Reeves. The model symbolizes the longtime relationship and shared history between the state of Mississippi and NASA’s Stennis Space Center near Bay St. Louis, Mississippi, the nation’s largest rocket propulsion test site. Built in the 1960s, NASA Stennis tested Apollo rocket stages that carried humans to the Moon and every main engine that helped launch 135 space shuttle missions. It now is testing engines and systems for NASA’s Artemis missions and operates as a powerful aerospace and technology hub for the region and state. “We are grateful for our ongoing relationship with the state of Mississippi,” NASA Stennis Director John Bailey said. “We appreciate every opportunity to highlight the role NASA Stennis and the state play in helping to power the nation’s human space exploration program. We look forward to 2025 and continuing our work to test engines and systems that will help launch Artemis missions back to the Moon and beyond.” NASA Stennis/Troy Frisbie NASA Stennis Director Hosts Java with John NASA Stennis Director John Bailey hosts a Java with John session on Dec. 10 with employees representing the Office of the Chief Financial Officer, Office of STEM Engagement, Office of Diversity and Equal Opportunity, Office of the Chief Human Capital Officer, and the center’s Autonomous Systems Laboratory team. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work. NASA/Danny Nowlin NASA Assistant Administrator for Procurement Visits NASA Stennis The NASA assistant administrator for procurement stands with leaders of NASA’s Stennis Space Center and the NASA Shared Services Center during a visit to the south Mississippi site Dec. 11 to deliver an agency update, highlighting key initiatives and priorities across NASA’s procurement activities. The visit focused on fostering open communications and collaboration, and included an opportunity for Jackson to engage with procurement staff, provide updates, and respond to questions. The assistant administrator met with NASA leadership to align on strategic goals, discuss procurement-related challenges and opportunities, and reinforce support for the NASA Stennis mission. The visit highlighted NASA’s continued commitment to innovation, efficiency, and mission success through effective procurement strategies. Pictured (left to right) are James Bailey, NASA Shared Services Center/NASA Stennis deputy procurement officer; NASA Stennis Deputy Director Christine Powell; NASA Stennis Director John Bailey; Karla Smith, NASA assistant administrator for procurement; Eli Ouder, NASA Shared Services Center/NASA Stennis procurement officer; and Jamiel Charlton, NASA executive officer. Photo Credit: NASA/Danny Nowlin > Back to Top NASA in the News Artemis II Core Stage Vertical Integration Begins at NASA Kennedy – NASA New Commercial Artemis Moon Rovers Undergo Testing at NASA – NASA NASA Accelerates Space Exploration, Earth Science for All in 2024 – NASA Space Meets Sound: NASA Lands in 2024 Spotify Wrapped – NASA Artemis Accords Reach 50 Signatories as NASA Welcomes Panama, Austria – NASA > Back to Top Employee Profile: Heather Seagren Heather Seagren grew up near NASA’s Stennis Space Center and visited for field trips as a child. Now, as a financial management specialist, Seagren coordinates work trips for NASA employees at the south Mississippi NASA center. NASA/Danny Nowlin A leap of faith for Heather Seagren eight years ago brought the Gulf Coast native to something new, yet also returned her to a familiar place at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Read More About Heather Seagren > Back to Top Additional Resources Good Things with Rebecca Turner – SuperTalk Mississippi (interview with NASA Stennis Director John Bailey) Subscription Info Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail). The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin. To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address. Explore More 4 min read Lagniappe for October 2024 Article 3 months ago 6 min read Lagniappe for November 2024 Article 2 months ago 4 min read Lagniappe for December 2024 Article 1 month ago View the full article
  3. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Heather Seagren grew up near NASA’s Stennis Space Center and visited for field trips as a child. Now, as a financial management specialist, Seagren coordinates work trips for NASA employees at the south Mississippi NASA center. NASA/Danny Nowlin A leap of faith for Heather Seagren eight years ago brought the Gulf Coast native to something new, yet also returned her to a familiar place at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Following graduation from Pearl River Community College, Seagren worked as an office manager at a pediatric office. Seagren anticipated a full career in the medical field until an opportunity at the south Mississippi NASA center “kind of fell in my lap,” she said. The NASA Shared Services Center, located at NASA Stennis, was hiring for its travel department, so Seagren applied. “There are many different roles here, and my biggest thing was, do not second guess your decisions,” she said. “It was a big change for me, and I made the leap and ended up where I am today, even though it was a completely different career field.” A new career field, yes, but not a new place. Seagren grew up in Pearlington, Mississippi, less than 10 miles from the nation’s largest propulsion test site. Her grandfather, Grover “Shu-Shu” Bennett, retired from NASA Stennis as a tugboat captain, helping to deliver rocket propellants along the site canal system to the test stands at NASA Stennis. Just as her grandfather ensured the rocket engine fuel made it to its destination on time, Seagren does the same for NASA employees by coordinating travel plans. She now is in a similar role as a NASA Stennis financial management specialist. Working with astronauts, engineers, and many other NASA employees, no two trips are alike, which is a part of the job Seagren enjoys. What is similar is the trips coordinated by Seagren align with NASA’s mission to explore the secrets of the universe for the benefit of all. The Kiln, Mississippi, resident plays a vital role in the NASA mission by bringing together the details of booking flights, arranging accommodations, and managing schedules. “The best thing about working at NASA Stennis is getting to experience everything,” she said. “It is always interesting to see what other projects and duties everybody is doing. The process kind of starts with the travel department. … It is a small step, but we are involved, making sure everybody is where they need to be, when they need to be there, so, I think that is pretty cool.” Learn more about the people who work at NASA Stennis View the full article
  4. Learn Home Science Activation NASA Workshops Culturally… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read NASA Workshops Culturally Inclusive Planetary Engagement with Educators From November 6-8, 2024, the NASA Science Activation Program’s Planetary Resources and Content Heroes (ReaCH) project held a Culturally Inclusive Planetary Engagement workshop at the Bradley Observatory at Agnes Scott College in Atlanta, Georgia for the space sciences community, including planetary science, astrobiology, astronomy, and heliophysics professionals, as well as invited education specialists. To practice the skills learned in the workshop, participants facilitated a variety of space-themed, culturally-inclusive, hands-on activities for 79 students, family, and staff at the Center for a New Generation at the Tuskegee Airmen Global Academy Boys and Girls Club. Workshop participants provided anonymous feedback as a part of their workshop evaluations: “[This experience] helped me learn a lot about how to make different cultures and ethnicities feel involved and included and also engage with them to inspire in them a love for science” “. . .I feel like the discussions were so important to me, considering we all come from so many different backgrounds, and our exposure has been different, so we all have a different point of view to bring to the discussion that others, that I, might not think of right away. So I think it was really nice to hear so many different perspectives in all of these discussions.” “[The facilitator] connected cultural diversity to an activity. That is not easy to do. I loved it and it is what I expected coming into this workshop.” This workshop was conducted in partnership with Agnes Scott College, Georgia Tech, the Boys & Girls Clubs of Metro Atlanta, and members of the Center for Lunar Environment and Volatile Exploration Research (CLEVER) NASA Solar System Exploration Research Institute (SSERVI) Center. ReaCH workshops are designed to enhance the ability of scientists to engage their local communities in science. The Planetary ReaCH project is building a replicable model that will be used to support similar workshops for other science fields. NASA-funded researchers, including early-career scientists, are invited to apply for the 2025 workshops! The Planetary ReaCH project is supported by NASA under cooperative agreement award number 80NSSC21M0003 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn The workshop was attended by researchers including early career scientists, planetary scientists, astrobiologists, astronomers, heliophysicists, and education specialists. Share Details Last Updated Jan 02, 2025 Editor NASA Science Editorial Team Related Terms Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Educators to Get Involved Planetary Science Science Activation Explore More 3 min read Astronomy Activation Ambassadors: A New Era Article 2 days ago 5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster NASA-supported scientists have shown how ferns might help ecosystems recover from disasters. Article 2 weeks ago 5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as… Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  5. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Next Generation Lunar Retroreflector, or NGLR-1, is one of 10 payloads set to fly aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative in 2025. NGLR-1, outfitted with a retroreflector, will be delivered to the lunar surface to reflect very short laser pulses from Earth-based lunar laser ranging observatories. Photo courtesy Firefly Aerospace Apollo astronauts set up mirror arrays, or “retroreflectors,” on the Moon to accurately reflect laser light beamed at them from Earth with minimal scattering or diffusion. Retroreflectors are mirrors that reflect the incoming light back in the same incoming direction. Calculating the time required for the beams to bounce back allowed scientists to precisely measure the Moon’s shape and distance from Earth, both of which are directly affected by Earth’s gravitational pull. More than 50 years later, on the cusp of NASA’s crewed Artemis missions to the Moon, lunar research still leverages data from those Apollo-era retroreflectors. As NASA prepares for the science and discoveries of the agency’s Artemis campaign, state-of-the-art retroreflector technology is expected to significantly expand our knowledge about Earth’s sole natural satellite, its geological processes, the properties of the lunar crust and the structure of lunar interior, and how the Earth-Moon system is changing over time. This technology will also allow high-precision tests of Einstein’s theory of gravity, or general relativity. That’s the anticipated objective of an innovative science instrument called NGLR (Next Generation Lunar Retroreflector), one of 10 NASA payloads set to fly aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. NGLR-1 will be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander. Developed by researchers at the University of Maryland in College Park, NGLR-1 will be delivered to the lunar surface, located on the Blue Ghost lander, to reflect very short laser pulses from Earth-based lunar laser ranging observatories, which could greatly improve on Apollo-era results with sub-millimeter-precision range measurements. If successful, its findings will expand humanity’s understanding of the Moon’s inner structure and support new investigations of astrophysics, cosmology, and lunar physics – including shifts in the Moon’s liquid core as it orbits Earth, which may cause seismic activity on the lunar surface. “NASA has more than half a century of experience with retroreflectors, but NGLR-1 promises to deliver findings an order of magnitude more accurate than Apollo-era reflectors,” said Dennis Harris, who manages the NGLR payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Deployment of the NGLR payload is just the first step, Harris noted. A second NGLR retroreflector, called the Artemis Lunar Laser Retroreflector (ALLR), is currently a candidate payload for flight on NASA’s Artemis III mission to the Moon and could be set up near the lunar south pole. A third is expected to be manifested on a future CLPS delivery to a non-polar location. “Once all three retroreflectors are operating, they are expected to deliver unprecedented opportunities to learn more about the Moon and its relationship with Earth,” Harris said. Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander. Learn more about. CLPS and Artemis at: https://www.nasa.gov/clps Alise Fisher Headquarters, Washington 202-358-2546 Alise.m.fisher@nasa.gov Headquarters, Washington 202-358-2546 Alise.m.fisher@nasa.gov Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256-544-0034 corinne.m.beckinger@nasa.gov Share Details Last Updated Jan 02, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related TermsCommercial Lunar Payload Services (CLPS)ArtemisMarshall Space Flight Center Explore More 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge Article 2 weeks ago 4 min read Artemis II Core Stage Vertical Integration Begins at NASA Kennedy Article 2 weeks ago 2 min read NASA Names Carlos Garcia-Galan as Gateway Program Deputy Manager Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  6. NASA/Joel Kowsky NASA photographer Joel Kowsky captured this image of the Monday, April 8, 2024, total solar eclipse from the Indianapolis Motor Speedway in Indianapolis, Indiana. The total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. A partial solar eclipse was visible across the entire North American continent along with parts of Central America and Europe. The NASA Headquarters photo team chose this image as one of the best from 2024. See more of the top 100 from last year on Flickr. Image Credit: NASA/Joel Kowsky View the full article
  7. Astronauts Talk to NASA Leaders
  8. 3 min read January’s Night Sky Notes: The Red Planet by Kat Troche of the Astronomical Society of the Pacific Have you looked up at the night sky this season and noticed a bright object sporting a reddish hue to the left of Orion? This is none other than the planet Mars! January will be an excellent opportunity to spot this planet and some of its details with a medium-sized telescope. Be sure to catch these three events this month. Martian Retrograde Mars entered retrograde (or backward movement relative to its usual direction) on December 7, 2024, and will continue throughout January into February 23, 2025. You can track the planet’s progress by sketching or photographing Mars’ position relative to nearby stars. Be consistent with your observations, taking them every few nights or so as the weather permits. You can use free software like Stellarium or Stellarium Web (the browser version) to help you navigate the night as Mars treks around the sky. You can find Mars above the eastern horizon after 8:00 PM local time. This mid-January chart shows the path of Mars from September 2024 to June 2025 as it enters and then exits in retrograde motion. Mars appears to change its direction of motion in the sky because Earth is passing the slower-moving Mars in its orbit. Stellarium Hide and Seek On the night of January 13th, you can watch Mars ‘disappear’ behind the Moon during an occultation. An occultation is when one celestial object passes directly in front of another, hiding the background object from view. This can happen with planets and stars in our night sky, depending on the orbit of an object and where you are on Earth, similar to eclipses. A simulated view of the Moon as Mars begins its occultation on January 13, 2025. Stellarium Depending on where you are within the contiguous United States, you can watch this event with the naked eye, binoculars, or a small telescope. The occultation will happen for over an hour in some parts of the US. You can use websites like Stellarium Web or the Astronomical League’s ‘Moon Occults Mars’ chart to calculate the best time to see this event. Closer and Closer As you observe Mars this month to track its retrograde movement, you will notice that it will increase in brightness. This is because Mars will reach opposition by the evening of January 16th. Opposition happens when a planet is directly opposite the Sun, as seen from Earth. You don’t need to be in any specific city to observe this event; you only need clear skies to observe that it gets brighter. It’s also when Mars is closest to Earth, so you’ll see more details in a telescope. Want a quick and easy way to illustrate what opposition is for Jupiter, Saturn, Mars, or other outer worlds? Follow the instructions on our Toolkit Hack: Illustrating Opposition with Exploring the Solar System page using our Exploring Our Solar System activity! A mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The mosaic is composed of 102 Viking Orbiter images of Mars. NASA/JPL-Caltech Mars has fascinated humanity for centuries, with its earliest recorded observations dating back to the Bronze Age. By the 17th century, astronomers were able to identify features of the Martian surface, such as its ice caps and darker regions. Since the 1960s, exploration of the Red Planet has intensified with robotic missions from various space organizations. Currently, NASA has five active missions, including rovers and orbiters, with the future focused on human exploration and habitation. Mars will always fill us with a sense of wonder and adventure as we reach for its soil through initiatives such as the Moon to Mars Architecture and the Mars Sample Return campaign. View the full article
  9. Learn Home Astronomy Activation… STEM Engagement at NASA Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read Astronomy Activation Ambassadors: A New Era The NASA Science Activation Program’s Astronomy Activation Ambassadors (AAA) project aims to measurably enhance student Science, Technology, Engineering, and Mathematics (STEM) engagement via middle school, high school, and community college science teacher professional development. In 2024, AAA transitioned its focus to the development of an Astronomy Academy with varying levels of extent and intensity available to more than 300 teachers per year. Participants draw on NASA resources and Subject Matter Experts (SME) to enhance their teaching and help share their excitement about astronomy with their students. The three strands that comprise the Astronomy Academy are: webinars regarding NASA astrophysics and planetary science content and facilities, curriculum workshops enabling classroom use of an electromagnetic spectrum and multi-wavelength astronomy (EMS/MWA) curriculum, and STEM immersion experiences including guided visits to working observatories. The first two of the AAA program’s new type of STEM immersion experiences took place in June and September, 2024. During the weekend of June 22-23, 19 teachers gathered in San Jose, California for a full agenda, including: NASA SME presentations regarding planetary protection and exoplanet detection, a journey to the University of California’s Lick Observatory on nearby Mt. Hamilton for an in-depth guided tour of the observatory’s astronomy research facilities, which included engagement with the astronomers using the 3-meter Shane telescope, and a 4-hour hands-on EMS/MWA curriculum teaching workshop. A similar STEM immersion sequence was offered September 14-15 to 23 AAA teachers who attended a curriculum teaching workshop, learned about current infrared astronomy research from NASA Jet Propulsion Laboratory scientists, and received guided visits to the Keck Observatory’s remote observing facility on the Caltech campus and the Mt. Wilson Observatory, including a half-night’s reserved use of the historic Mt. Wilson 60-inch telescope. The teachers were invited to submit a list of objects to be observed with the Mt. Wilson telescope and viewed a wonderful array of star clusters, colorful double stars, and galaxies, with a grand finale view of Saturn and its rings. Teacher participant, Domina Stamas (Westlake Charter School, Sacramento, California), had this to say: “My students and I are already benefiting greatly from the combination of NASA resources, science content, and curricular materials we have received from the AAA project. The evening at Lick Observatory talking with the astronomers who were using the research telescopes watching the laser guide star setup in action was a rich experience. I can convey to my students how scientists actually practice their craft.” The Astronomy Activation Ambassador project’s efforts to improve student STEM learning and engagement via science teacher professional development are detailed at: https://www.seti.org/aaa Educator enrollment is still open via the participant registration form: https://forms.gle/G34vCzz63ko5RRrM8 The AAA project, led by the SETI Institute, is supported by NASA under cooperative agreement award number NNX16AC51A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn June 2024 teacher participants in front of the Lick Observatory’s historic 36-inch refracting telescope. SETI Institute/C. Clark Share Details Last Updated Dec 31, 2024 Editor NASA Science Editorial Team Location Jet Propulsion Laboratory Related Terms Astronomy Astrophysics Grades 9-12 for Educators Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation STEM Engagement at NASA Explore More 5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster NASA-supported scientists have shown how ferns might help ecosystems recover from disasters. Article 2 weeks ago 2 min read Hubble Spies a Cosmic Eye Article 2 weeks ago 7 min read Very Cold Detectors Reveal the Very Hot Universe and Kick Off a New Era in X-ray Astronomy Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  10. Peering through the window of the SpaceX Dragon Endeavour spacecraft, NASA astronaut Matthew Dominick captured this image on Oct. 7, 2024 of the SpaceX Dragon Freedom spacecraft as vivid green and pink aurora swirled through Earth’s atmosphere while the International Space Station soared 273 miles above the Indian Ocean. Visit Dominick’s photography on station to experience the wonders of space through his eyes, enriched by his remarkable journey of orbiting the Earth 3,760 times. To see a short-term forecast of the location and intensity of the next aurora check this link: Aurora – 30 Minute Forecast and also NASA’s Guide to Finding and Photographing Auroras. Image Credit: NASA/Matthew Dominick View the full article
  11. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) In-person participants L-R standing: Dave Francisco, Joanne Kaouk, Dr. Richard Moon, Dr. Tony Alleman, Dr. Sean Hardy, Sarah Childress, Kristin Coffey, Dr. Ed Powers, Dr. Doug Ebersole, Dr. Steven Laurie, Dr. Doug Ebert; L-R seated: Dr. Alejandro Garbino, Dr. Robert Sanders, Dr. Kristi Ray, Dr. Mike Gernhardt, Dr. Joseph Dervay, Dr. Matt Makowski). Not pictured: Dr. Caroline Fife In June 2024, the NASA Office of the Chief Health and Medical Officer (OCHMO) Standards Team hosted an independent assessment working group to review the status and progress of research and clinical activities intended to mitigate the risk of decompression sickness (DCS) related to patent foramen ovale (PFO) during spaceflight and associated ground testing and human subject studies. Decompression sickness (DCS) is a condition which results from dissolved gases (primarily nitrogen) forming bubbles in the bloodstream and tissues. It is usually experienced in conditions where there are rapid decreases in ambient pressure, such as in scuba divers, high-altitude aviation, or other pressurized environments. The evolved gas bubbles have various physiological effects and can obstruct the blood vessels, trigger inflammation, and damage tissue, resulting in symptoms of DCS. NASA presently classifies DCS into two categories: Type I DCS, which is less severe, typically leads to musculoskeletal symptoms including pain in the joints or muscles, or skin rash. Type II DCS is more severe and commonly results in neurological, inner ear, and cardiopulmonary symptoms. The risk of DCS in spaceflight presents during extravehicular activities (EVAs) in which astronauts perform mission tasks outside the spaceflight vehicle while wearing a pressurized suit at a lower pressure than the cabin pressure. DCS mitigation protocols based on strategies to reduce systemic nitrogen load are implemented through the combination of habitat environmental parameters, EVA suit pressure, and breathing gas procedures (prebreathe protocols) to achieve safe and effective mission operations. The pathophysiology of DCS has still not been fully elucidated since cases occur despite the absence of detected gas bubbles but includes right to left shunting of venous gas emboli (VGE) via several potential mechanisms, one of which is a Patent Foramen Ovale (PFO). From: Dr. Schochet & Dr. Lie, Pediatric Pulmonologists Reference OCHMO-TB-037 Decompression Sickness (DCS) Risk Mitigation technical brief for additional information. A PFO is a shunt between the right atrium and the left atrium of the heart, which is a persisting remnant of a physiological communication present in the fetal heart. Post-natal increases in left atrial pressure usually force the inter-septal valve against the septum secundum and within the first 2 years of life, the septae permanently fuse due to the development of fibrous adhesions. Thus, all humans are born with a PFO and approximately 75% of PFOs fuse following childbirth. For the 25% of the population’s whose PFOs do not fuse, ~6% have what is considered by some to be a large PFO (> 2 mm). PFO diameter can increase with age. The concern with PFOs is that with a right to left shunt between the atria, venous emboli gas may pass from the right atrium (venous) to the left atrium (arterial) (“shunt”), thus by-passing the normal lung filtration of venous emboli which prevent passage to the arterial system. Without filtration, bubbles in the arterial system may lead to a neurological event such as a stroke. Any activity that increases the right atrium/venous pressure over the left atrium/arterial pressure (such as a Valsalva maneuver, abdominal compression) may further enable blood and/or emboli across a PFO/shunt. From: Nuffield Department of Clinical Neurosciences The purpose of this working group was to review and provide analysis on the status and progress of research and clinical activities intended to mitigate the risk of PFO and DCS issues during spaceflight. Identified cases of DCS during NASA exploration atmosphere ground testing conducted in pressurized chambers led to the prioritization of the given topic for external review. The main goals of the working group included: Quantification of any increased risk associated with the presence of a PFO during decompression protocols utilized in ground testing and spaceflight EVAs, as well as unplanned decompressions (e.g., cabin depressurization, EVA suit leak). Describe risks and benefits of PFO screening in astronaut candidates, current crewmembers, and chamber test subjects. What are potential risk reduction measures that could be considered if a person was believed to be at increased risk of DCS due to a PFO? What research and/or technology development is recommended that could help inform and/or mitigate PFO-related DCS risk? The working group took place over two days at NASA’s Johnson Space Center and included NASA subject matter experts and stakeholders, as well as invited external reviewers from areas including cardiology, hypobaric medicine, spaceflight medicine, and military occupational health. During the working group, participants were asked to review past reports and evidence related to PFOs and risk of DCS, materials and information regarding NASA’s current experience and practices, and case studies and subsequent decision-making processes. The working group culminated in an open-forum discussion where recommendations for current and future practices were conferred and subsequently summarized in a final summary report, available on the public NASA OCHMO Standards Team website. The following key findings are the main take-aways from the OCHMO independent assessment: In an extreme exposure/high-risk scenario, excluding individuals with a PFO and treating PFOs does not necessarily decrease the risk of DCS or create a ‘safe’ environment. It may create incremental differences and slightly reduce overall risk but does not make the risk zero. There are other physiological factors that also contribute to the risk of DCS that may have a larger impact (see 7.0 Other Physiological Factors in the findings section). Based on the available evidence and the risk of current decompression exposures (based on current NASA protocols and NASA-STD-3001 requirements to limit the risk of DCS), it is not recommended to screen for PFOs in any spaceflight or ground testing participants. The best strategy to reduce the risk of DCS is to create as safe an environment as possible in every scenario, through effective prebreathe protocols, safety, and the capability to rapidly treat DCS should symptoms occur. Based on opinion, no specific research is required at this time to further characterize PFOs with DCS and altitude exposure, due to the low risk and preference to institute adequate safe protocols and ensuring treatment availability both on the ground and in spaceflight. For engineering protocols conducted on the ground, it should be ensured that the same level of treatment capability (treatment chamber in the immediate vicinity of the testing) is provided as during research protocols. The ability to immediately treat a DCS case is critical in ensuring the safety of the test subjects. The full summary report includes detailed background information, discussion points from the working group, and conclusions and recommendations. The findings from the working group and resulting summary report will help to inform key stakeholders in decision-making processes for future ground testing and spaceflight operations with the main goal of protecting crew health and safety to ensure overall mission success. Summary Report About the AuthorSarah D. Childress Share Details Last Updated Dec 31, 2024 Related TermsOffice of the Chief Health and Medical Officer (OCHMO)Human Health and PerformanceHumans in SpaceInternational Space Station (ISS) Explore More 2 min read Station Science Top News: Dec. 20, 2024 Article 2 weeks ago 4 min read Artemis II Core Stage Vertical Integration Begins at NASA Kennedy Article 2 weeks ago 3 min read NASA, Axiom Space Change Assembly Order of Commercial Space Station Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  12. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Sols 4402-4415: Rover Decks and Sequence Calls for the Holidays An image under the left-front wheel of NASA’s Mars rover Curiosity shows a block that Curiosity drove over and possibly broke in half. The rover acquired this image using its Mars Descent Imager (MARDI) on sol 4396 — Martian day 4,396 of the Mars Science Laboratory mission — on Dec. 18, 2024 at 06:03:35 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Friday, Dec. 20, 2024 Welcome to the 2024 holiday plan for Curiosity! This year we’re spanning 14 sols to last us through the Earth new year. And this is my fourth year operating Mastcam during the holidays (throwback to 2023 Marsmas!). I already knew to expect a long day, so I got my lunch prepared — blew Mars a kiss in the pre-dawn sky — and headed to work at 0600 Pacific time to start planning prep. Luckily my team got a head start on Mastcam images by including a full 360-degree panorama, post-drive, last plan, so I just had to fill in some gaps and cover some buttes with our higher-resolution camera. In total we’re only planning about 438 images this holiday, which is a pretty light haul if you can believe it! We also didn’t pass SRAP to unstow the arm (again) today, which is a bummer for science but usually makes my job easier since Mastcam doesn’t have to worry about where the arm might be during our imaging. One instrument’s coal is another instrument’s present! So we’re doing things a little funky this holiday. We’re planning science on the first, seventh, 13th, and 14th sols — with a drive and a soliday! The hardest part of this plan was keeping it all straight in our heads. Without any contact science planned, MAHLI went on holiday early (actually, she’s been out all week!) and APXS only had to babysit an atmospheric integration, which doesn’t require any arm motion. ChemCam has three LIBS and four RMI mosaics planned, which is definitely more than usual. But actually, the highest sequence count for today goes to Mastcam! Our usual limit is around 20 sequences for complexity reasons, but today I delivered 34 total sequences. Of those 34 sequences, 10 are for tracking surface changes from wind, seven are for measuring the atmospheric opacity, three are ChemCam LIBS documentations, three are for documenting our location post-drive, two are large mosaics of Texoli and Wilkerson buttes, and two are for noctilucent cloud searching (our first attempts to find clouds this Martian winter!). With any luck, we’ll start passing SRAP again in 2025 after another approximately 58-meter drive (about 190 feet). Until then, Earthlings — Merry Marsmas and Happy Earth New Year! Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems Share Details Last Updated Dec 30, 2024 Related Terms Blogs Explore More 4 min read Sols 4398-4401: Holidays Ahead, Rocks Under the Wheels Article 2 weeks ago 3 min read Perseverance Blasts Past the Top of Jezero Crater Rim Article 2 weeks ago 3 min read Sols 4396-4397: Roving in a Martian Wonderland Article 2 weeks ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  13. Skywatching Skywatching Home What’s Up Eclipses Explore the Night Sky Night Sky Network More Tips and Guides FAQ Four Planets in One View! Each evening this month, enjoy a sweeping view of four bright planets at once. Also look for a close approach of Venus and Saturn, Mars occulted by the Moon, and meteors! Skywatching Highlights January 3 – Quadrantid meteor shower peaks: This is a moderate shower, usually delivering 20 to 30 meteors per hour under clear, dark skies at its peak. No interference from the Moon makes this year’s peak a better bet for meteor watching. January 13 – Moon Occults Mars: For skywatchers in the continental U.S. and Eastern Canada, the Moon will appear to pass in front of Mars this evening. Times vary by location, so check your favorite skywatching app for details. January 17-18 – Venus and Saturn conjunction: Over a couple of weeks, the two planets come within just a couple of finger widths’ distance apart in the sky (about 2 degrees). They’re at their closest on the 17th and 18th. All month – Four planets Visible: In the first couple of hours after dark, you’ll find Venus and Saturn in the southwest, Jupiter high overhead, and Mars in the east. (Uranus and Neptune are there too, but a telescope is needed to see them.) Planets always appear a long a line on the sky to the “alignment” isn’t special. What’s less common is seeing four or five bright planets at once, which doesn’t happen every year. Is it a “planet parade”? This isn’t a technical term in astronomy, so call it what you wish! All month – Mars at Opposition: The Red Planet is directly opposite the Sun from Earth and shines brightly all night. It’s in the east as night falls and in the southwest at dawn. Transcript What’s Up for January? Cue the planet parade, Saturn and Venus cross paths, Mars expresses its opposition, and the outlook for the Quadrantid meteors. In January, you’ll have the opportunity to take in four bright planets in a single, sweeping view. Sky chart showing the planetary lineup visible after dark in January 2025. NASA/JPL-Caltech All month after dark, you’ll find Venus and Saturn in the southwest for the first couple of hours, while Jupiter shines brightly high overhead, and Mars rises in the east. Uranus and Neptune are there too, technically, but they don’t appear as “bright planets.” These multi-planet viewing opportunities aren’t super rare, but they don’t happen every year, so it’s worth checking it out. Now, these events are sometimes called “alignments” of the planets, and while it’s true that they will appear more or less along a line across the sky, that’s what planets always do. That line is called the ecliptic, and it represents the plane of the solar system in which the planets orbit around the Sun. This is, incidentally, why we sometimes observe planets appearing to approach closely to each other on the sky, as we view them along a line while they careen around the cosmic racetrack. Sky chart showing Venus and Saturn appearing quite close together on Jan. 17 and 18, 2025. NASA/JPL-Caltech This is exactly what we’ll be seeing from Venus and Saturn as they head for a super close approach in mid-January. After the beginning of the month, they quickly get closer and closer each evening, appearing at their most cozy on the 17th and 18th before going their separate ways. Remember, they’re really hundreds of millions of miles apart in space, so when you observe them, you’re staring clear across the solar system! Mars reaches “opposition” this month, which is when the planet lies directly on the opposite side of Earth from the Sun, forming a straight line. This is around the time when the planet is at its closest to Earth, making it appear at its biggest and brightest. For Mars, oppositions happen about every two years. This one won’t be the most spectacular ever, but it’s still closer than average, and provides a great opportunity to observe the nearby planet where NASA has five missions currently operating. And on the 13th, the full Moon cozies up to Mars, appearing super close to the Red Planet that evening. Across the U.S. and Eastern Canada, the Moon will appear to pass in front of Mars over a couple of hours, as the pair rise into the eastern sky. Mars also will be the lone planet in the sky on January mornings. You’ll find it hanging out in the west in morning twilight. The Quadrantid meteors peak in the early morning hours on January 3rd. Interference from moonlight won’t be a problem, as the Moon is a mere crescent and sets early in the night. The way to see the most meteors is to observe after midnight from clear, dark skies away from bright city lights, and let your eyes adapt to the dark. The meteor rate will be highest as dawn approaches, and you’ll see more meteors from rural locations than in the suburbs. Now, this is a shower best seen from the Northern Hemisphere, and observers in the Northwest and Pacific region will likely have the best viewing this year. Here are the phases of the Moon for January: The phases of the Moon for January 2025. NASA/JPL-Caltech Stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. Keep Exploring Discover More Topics From NASA Solar System Exploration Planets Moons Asteroids, Comets & Meteors View the full article
  14. NASA President Jimmy Carter, wife Rosalynn, and daughter Amy, along with Kennedy Space Center Director Lee Scherer, look at a scale model of the crawler that transported the total shuttle launch configuration from the Vehicle Assembly Building to Pad 39. Despite the setbacks faced through technical and schedule problems during the development of the Space Shuttle Program, President Carter provided NASA with its first budget extension to complete funding for the program. His decision to support the creation of a peaceful scientific spacecraft enabled the creation of the International Space Station, the longest continuously maintained laboratory in space–dedicated to the peaceful advance of scientific discovery. President Carter passed away Sunday, Dec. 29, 2024. Read a statement from NASA Administrator Bill Nelson paying tribute. Image Credit: NASA View the full article
  15. NASA Administrator Bill Nelson, and NASA Deputy Administrator Pam Melroy, react as they are recognized by employees during a NASA agencywide all hands on Dec. 6, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.Credit: NASA/Bill Ingalls NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy will speak with NASA astronauts Nick Hague, Butch Wilmore, Suni Williams, and Don Pettit on Monday, Jan. 6, to discuss their mission aboard the International Space Station. The Earth to space call coverage begins at 1:30 p.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and eventually, to Mars. For NASA’s launch blog and more information about the mission, visit: https://www.nasa.gov/commercialcrew -end- Meira Bernstein / Josh Finch Headquarters, Washington 202-358-1100 meira.b.bernstein@nasa.gov / joshua.a.finch@nasa.gov Share Details Last Updated Dec 30, 2024 LocationNASA Headquarters Related TermsInternational Space Station (ISS)Commercial CrewHumans in SpaceISS ResearchJohnson Space Center View the full article
  16. President Carter, wife Rosalynn and daughter Amy are shown a scale model of the crawler that transported the total shuttle launch configuration to Pad 39 from the Vehicle Assembly Building by NASA’s Kennedy Space Center Director Lee Scherer in 1978.NASA The following is a statement from NASA Administrator Bill Nelson on Sunday’s passing of President Jimmy Carter: “President Carter was the pinnacle of a public servant, dedicating his life to making our world a better place. He showed us each and every person has the power to make a difference. From providing for those in need, protecting the environment, and championing civil and human rights, President Carter was a good man who always strove to do what was right. He embodied the very best of humanity and his life and legacy are an example to the United States and the world. “NASA’s Voyager 1, the most distant human-made object from Earth, carries a message from President Carter that captures his core goodness and grace: “’If one such civilization intercepts Voyager and can understand these recorded contents, here is our message: This is a present from a small distant world, a token of our sounds, our science, our images, our music, our thoughts, and our feelings. We are attempting to survive our time so we may live into yours. We hope someday, having solved the problems we face, to join a community of galactic civilizations. This record represents our hope and our determination, and our good will in a vast and awesome universe.’ “President Carter understood an important truth: that we find common ground when we look to the stars. His words will forever belong to the heavens, and his legacy has forever bettered our country – and our Earth. The NASA family and I are keeping the Carter family close in our thoughts. May President Carter rest in peace.” -end- Meira Bernstein / Cheryl Warner Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov Share Details Last Updated Dec 29, 2024 EditorJennifer M. DoorenLocationNASA Headquarters View the full article
  17. 5 Min Read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun An artist’s concept showing Parker Solar Probe. Credits: NASA/APL Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally. This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun. Flying this close to the Sun is a historic moment in humanity’s first mission to a star. Nicky fox NASA Associate Administrator, Science Mission Directorate “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.” NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. Credits: NASA This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741. Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission. “Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.” Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit. The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona. NASA/APL “It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.” By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light. “The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.” Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere. Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur. This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith “We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.” Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring. So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass. The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been. Joe Westlake Heliophysics Division Director, NASA Headquarters “The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.” The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025. By Mara Johnson-Groh NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Sarah Frazier Share Details Last Updated Dec 27, 2024 Editor Abbey Interrante Related Terms Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More 1 min read NASA’s Parker Solar Probe Touches The Sun For The First Time Article 3 years ago 4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass Article 2 months ago 6 min read 10 Things to Know About Parker Solar Probe On Aug. 12, 2018, NASA launched Parker Solar Probe to the Sun, where it will… Article 6 years ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  18. This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 2566.ESA/NASA This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 2566, which sits 76 million light-years away in the constellation Puppis. A prominent bar of stars stretches across the center of this galaxy, and spiral arms emerge from each end of the bar. Because NGC 2566 appears tilted from our perspective, its disk takes on an almond shape, giving the galaxy the appearance of a cosmic eye. As NGC 2566 appears to gaze at us, astronomers gaze right back, using Hubble to survey the galaxy’s star clusters and star-forming regions. The Hubble data are especially valuable for studying stars that are just a few million years old; these stars are bright at the ultraviolet and visible wavelengths to which Hubble is sensitive. Using these data, researchers can measure the ages of NGC 2566’s stars, which helps piece together the timeline of the galaxy’s star formation and the exchange of gas between star-forming clouds and the stars themselves. Hubble regularly teams up with other astronomical observatories to examine objects like NGC 2566, including the NASA/ESA/CSA James Webb Space Telescope. Webb data complements Hubble’s by going beyond the infrared wavelengths of light Hubble can see, better defining areas of warm, glowing dust. At even longer wavelengths, the Atacama Large Millimeter/submillimeter Array (ALMA) of 66 radio telescopes that work together can capture detailed images of the clouds of gas and dust in which stars form. Together, Hubble, Webb, and ALMA provide an overview of the formation, lives, and deaths of stars in galaxies across the universe. View the full article
  19. NASA 2025: To the Moon, Mars, and Beyond
  20. The NESC Mechanical Systems TDT provides broad support across NASA’s mission directorates. We are a diverse group representing a variety of sub-disciplines including bearings, gears, metrology, lubrication and tribology, mechanism design, analysis and testing, fastening systems, valve engineering, actuator engineering, pyrotechnics, mechatronics, and motor controls. In addition to providing technical support, the TDT owns and maintains NASA-STD-5017, “Design and Development Requirements for Space Mechanisms.” Mentoring the Next Generation The NESC Mechanical Systems TDT actively participates in the Structures, Loads & Dynamics, Materials, and Mechanical Systems (SLAMS) Early Career Forum that mentors early-career engineers. The TDT sent three members to this year’s forum at WSTF, where early-career engineers networked with peers and NESC mentors, gave presentations on tasks they worked on at their home centers, and attended splinter sessions where they collaborated with mentors. New NASA Valve Standard to Reduce Risk and Improve Design and Reliability Valve issues have been encountered across NASA’s programs and continue to compromise mission performance and increase risk, in many cases because the valve hardware was not qualified in the environment as specified in NASA-STD-5017. To help address these issues, the Mechanical Systems TDT is developing a NASA standard for valves. The TDT assembled a team of subject matter experts from across the Agency representing several disciplines including mechanisms, propulsion, environmental control and life support systems, spacesuits, active thermal control systems, and materials and processes. The team has started their effort by reviewing lessons learned and best practices for valve design and hope to have a draft standard ready by the end of 2025. Bearing Life Testing for Reaction Wheel Assemblies The Mechanical Systems TDT just concluded a multiyear bearing life test on 40 motors, each containing a pair of all steel bearings of two different conformities or a pair of hybrid bearings containing silicon nitride balls. The testing confirmed that hybrid bearings outperformed their steel counterparts, and bearings with higher conformity (54%) outperformed bearings with lower conformity (52%). The team is disassembling and inspecting the bearings, and initial results have been surprising. The TDT was able to “recover” some of the bearings that failed during the life test and get them running as well as they did when testing began. Some bearings survived over five billion revolutions and appeared like new when they were disassembled and inspected. These results will be published once analysis is complete. X-57 Design Assessment The Mechanical Systems TDT was asked by the Aeronautics Mission Directorate to assess the design of the electric cruise motors installed on X-57. The team responded quickly to meet the Project’s schedule, making an onsite visit and attending numerous technical interchange meetings. After careful review of the design, the TDT identified areas for higher-level consideration and risk assessment and attended follow-on reviews to provide additional comments and advice. CLARREO Pathfinder Inner Radial Bearing Anomaly The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder was designed to take highly accurate measurements of reflected solar radiation to better-understand Earth’s climate. During payload functional testing, engineers detected a noise as the HySICS pointing system was rotated from its normal storage orientation. Mechanical Systems TDT members reviewed the design and inspection reports after disassembly of the inner bearing unit, noticing contact marks on the bore of the inner ring and the shaft that confirmed that the inner ring of the bearing was moving on the shaft with respect to the outer ring. Lubricant applied to this interface resolved the noise problem and allowed the project to maintain schedule without any additional costs. JPL Wheel Drive Actuator Extended Life Test Independent Review Team A consequence of changes to its mission on Mars will require the Perseverance Rover to travel farther than originally planned. Designed to drive 20 km, the rover will now need to drive ~91 km to rendezvous and support Mars sample tube transfer to the Sample Retrieval Lander. The wheel drive actuators with integral brakes had only been life tested to 40 km, so a review was scheduled to discuss an extended life test. The OCE Science Mission Directorate Chief Engineer assembled an independent review team (IRT) that included NESC Mechanical Systems TDT members. This IRT issued findings and guidance that questioned details of the JPL assumptions and plan. Several important recommendations were made that improved the life test plan and led to the identification of brake software issues that were reducing brake life. The life test has achieved 40 km of its 137 km goal and is ongoing. In addition, software updates were sent to the rover to improve brake life. Orion Crew Module Hydrazine Valve When an Orion crew module hydrazine valve failed to close, the production team asked the Mechanical Systems TDT for help. A TDT member attended two meetings and then visited the valve manufacturer, where it was determined this valve was a scaled-down version of the 12-inch SLS prevalve that was the subject of a previous NESC assessment and shared similar issues. The Orion Program requested NESC materials and mechanical systems support. The Mechanical Systems TDT member then worked closely with a Lockheed Martin (LM) Fellow for Mechanisms to review all the valve vendor’s detailed drawings and assembly procedures and document any issues. A follow-on meeting was held to brief both the LM and NASA Technical Fellows for Propulsion that a redesign and requalification was recommended. These recommendations have now been elevated to the LM Vice President for Mission Success and the LM Chief Engineer for Orion. NASA’s Perseverance Mars rover selfie taken in July 2024. View the full article
  21. NASA’s uncrewed Artemis I mission launched from KSC on November 16, 2022. After a successful mission that included orbiting the Moon, the Orion spacecraft returned to Earth splashing down in the Pacific Ocean on December 11, 2022. While the spacecraft made a safe return to Earth, postflight inspection of Orion’s thermal protection indicated that the base heatshield did not perform as expected. The heatshield is composed of Avcoat, an ablative material designed to protect the crew module during the nearly 5000ºF temperatures experienced during atmospheric entry upon return from the Moon. Specifically, inspection revealed more than 100 locations where the charred Avcoat material chipped away from the heatshield. The NESC formed a team of subject matter experts from across and outside of the Agency to assist the Orion Program team in the overall investigation. NESC team members are supporting or leading efforts in multi-physics analysis, material testing, fault tree and root cause analysis, aeroscience review, analysis peer review, nondestructive evaluation (NDE), as well as investigation of alternative heatshield concepts. The NESC works closely with the Artemis I Char Loss Team to ensure the observed material loss is thoroughly understood so that decisions may be made regarding use for upcoming crewed missions. To date, NESC contributions have included pathfinding NDE techniques for postflight heatshield inspection, investigation of key Avcoat material properties and behavior, and providing key inputs to the fault tree development and disposition to guide a thorough investigation of possible causes. View from Artemis I crew cabin window showing material loss during entry (foreground). An artist’s illustration of Orion crew module entering the Earth’s atmosphere.View the full article
  22. “When I transitioned from Spelman to Georgia Tech, it was probably the first time in my life that I had a professor that made me question if I belonged or had what it takes. Previously, I was always used as an example of how students should study, and now, in my first chemical engineering class, I would raise my hand for a question and wouldn’t get recognized, or my question would be followed by, ‘I’m not sure I understand what you’re saying, Miss Plummer.’ “I was struggling with imposter syndrome before I knew what that was, wondering, ‘Have I just been in some dream world up until now? Am I not as smart as I thought I was?’ I would be in my room just knocking out homework problems, no problem, but I would get in class, and it was almost like I’d freeze up. [My professor] would be walking around the room, and I could not make my brain work. I really struggled through that and did not pass that class – the first time I had ever not passed a class – and this was supposed to be my major! “…Sometimes you look around and wonder why you don’t see a lot of [people of color] in some positions, and it’s probably because of situations like this where we have such high standards but feel we cannot meet them. We don’t give ourselves grace. We assume, ‘This obviously isn’t for me.’ “…But I knew I could do it. I had to, number one, get out of my head and, two, realize not everyone will be a fan or in your corner cheering for you… As a young college student, it was the first time I ever faced [this situation], and it buckled me. It set me back until I realized that I could do it and that my worth wasn’t based on what someone else thought of me or my abilities…I went back that next semester with a new mindset and determination, and I passed that class with an A and moved on through the rest of my engineering classes. “That [experience] really informed the type of leader I am and taught me how to make sure that everybody has a voice and feels like they belong. Looking back, I thought it was the worst thing in the world when I was going through it, but now I see it was exactly what I needed at that point in my life to understand that I’m meant to be here doing what I am doing. I learned to give myself grace. If I had pulled myself out of that STEM major, I would never have been managing a technology demonstration program for NASA that launched ten technologies into space.” – Tawnya Plummer Laughinghouse, Director of the Materials and Processes Laboratory, Engineering Directorate, NASA’s Marshall Space Flight Center Image Credit: NASA/Charles Beason Interviewer: NASA/Tahira Allen Check out some of our other Faces of NASA. View the full article
  23. X-ray: NASA/CXC/SAO; Optical: Clow, M.; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand This new view of the “Christmas tree cluster” NGC 2264, released on Dec. 17, 2024, combines data from NASA’s Chandra X-ray Observatory and optical data from astrophotographer Michael Clow’s telescope in Arizona. Chandra data is represented in red, purple, blue, and white, while optical data is in green and violet. Located about 2,500 light-years from Earth, NGC 2264 is a cluster of young stars between one and five million years old. The stars are seen here as blue and white lights surrounded by swirls of gas—the “pine needles” of the tree—with green representing light in the visible spectrum. Read more about the “Christmas tree cluster” – and the “cosmic wreath.” Image credit: X-ray: NASA/CXC/SAO; Optical: Clow, M.; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand View the full article
  24. NASA has a strong need for advanced materials and processes (M&P) across the realms of robotic- and crewed-spaceflight, as well as aeronautics, particularly when one acknowledges that all craft must be made of something. To meet that need, the materials discipline relies on collaboration—both between centers and across disciplines. Reaching the Agency’s Moon-to-Mars objectives will require leveraging each center’s specific M&P expertise, cross-training among the centers, and routinely interacting with the 20-plus Agency disciplines like structures, space environments, and loads and dynamics. When a discipline touches all classes of materials; all aspects of design, manufacturing, testing, and operations; and all phases of flight, collaboration is the only way to broaden and deepen its reach. This year, the Materials TDT pulled in wide-ranging center and discipline support for the VIPER lunar rover, investigations of cracks in the ISS Russian PrK, the X-59 supersonic aircraft, and the SLS Program. It also leveraged its contamination control experience to aid the Commercial Crew and Orion Programs. Below are some additional highlights from the year. Collaboration Among Disciplines Ms. Alison Park, NASA Deputy Technical Fellow for Materials, led a multi-disciplinary NESC team to address JPL’s request for sup – port to investigate anomalous temperature readings during thermal vacuum testing of the NASA Indian Space Research Organization (ISRO) Synthetic Aperture Rader (NISAR) reflect-array hardware, already integrated onto the spacecraft in India. The team provided detailed reviews of the thermal models and supported materials testing and characterization of the reflect-array construction record. The team’s work identified operability concerns from higher than expected temperatures that would be seen during the multi-day deployment process. The hardware was demated from the space – craft and returned to the United States for design upgrades and modifications to address the new concerns. The hardware is now set to return to India for reintegration and final launch preparations. Fostering Intercenter Cooperation Mr. Robert Carter, NASA Deputy Technical Fellow for Materials and GRC Deputy Division Chief, attended a technical exchange between GRC and MSFC. The exchange uncovered the need for an Agency-wide, materials-driven alloy development plan to identify key needs that would benefit spaceflight and aeronautics. From there, materials representatives from 7 of the 10 centers met in-person to develop a roadmap and a plan to be released in FY25. The Materials TDT also stood up an Alloy Development Community of Practice to provide a grassroots mechanism to identify cross-Agency needs, technical challenges, and benefits that aren’t identified programmatically or within mission directorates. Illustration depicting the NISAR satellite in orbit over central and Northern California. The satellite features an advanced radar system to globally monitor changes to Earth’s land and ice surfaces to deepen scientists’ understanding of natural hazards, land use, climate change, and other global processes. In June 2023, NISAR’s radar instrument payload and spacecraft bus were combined in an ISRO clean room facility in Bengaluru, India. Image credit: VDOS-URSC Leveraging NASA Partnerships The NASA Technical Fellow for Materials, Dr. Bryan W. McEnerney, hosted visitors from the European Space Agency (ESA) for a combined trip to JPL, GRC, and KSC, as well as the jointly organized Worldwide Advanced Manufacturing Symposium (WAMS) in Orlando, FL. In-depth technical interchanges between NASA and ESA emphasized advanced manufacturing with a focus on spaceflight needs. The event increased technical collaboration be – tween the two organizations, leading to ESA’s request to NASA for a formal review of ESA’s stress corrosion standard. Work was also initiated on a joint NASA/ESA intern program. Next year brings a number of new and exciting challenges, including an elevated temperature testing program focused on HallPetch effects in C-103 (niobium alloy), the domestic North American WAMS symposium in Knoxville, TN, and a continued focus on intercenter technical support. And, always a key objective, the discipline will actively engage early-career personnel on NESC assessments to learn from our veteran materials experts and to pass on the knowledge so unique to the space industry. Alloy Development community of practice participants. Robert Carter is at center.View the full article
  25. Humans are returning to the Moon—this time, to stay. Because our presence will be more permanent, NASA has selected a location that maximizes line-of-sight communication with Earth, solar visibility, and access to water ice: the Lunar South Pole (LSP). While the Sun is in the lunar sky more consistently at the poles, it never rises more than a few degrees above the horizon; in the target landing regions, the highest possible elevation is 7°. This presents a harsh lighting environment never experienced during the Apollo missions, or in fact, in any human spaceflight experience. The ambient lighting will severely affect the crews’ ability to see hazards and to perform simple work. This is because the human vision system, which despite having a high-dynamic range, cannot see well into bright light and cannot adapt quickly from bright to dark or vice versa. Functional vision is required to perform a variety of tasks, from simple tasks (e.g., walking, operating simple tools) through managing complex machines (e.g., lander elevator, rovers). Thus, the environment presents an engineering challenge to the Agency: one that must be widely understood before it can be effectively addressed. In past NASA missions and programs, design of lighting and functional vision support systems for extravehicular activity (EVA) or rover operations have been managed at the lowest program level. This worked well for Apollo and low Earth orbit because the Sun angle was managed by mission planning and astronaut self-positioning; helmet design alone addressed all vision challenges. The Artemis campaign presents new challenges to functional vision, because astronauts will be unable to avoid having the sun in their eyes much of the time they are on the lunar surface. This, combined with the need for artificial lighting in the extensive shadowing at the LSP, means that new functional vision support systems must be developed across projects and programs. The design of helmets, windows, and lighting systems must work in a complementary fashion, within and across programs, to achieve a system of lighting and vision support that enables crews to see into darkness while their eyes are light-adapted, in bright light while still dark-adapted, and protects their eyes from injury. Many of the findings of the assessment were focused on the lack of specific requirements to prevent functional vision impairment by the Sun’s brilliance (which is different from preventing eye injury), while enabling astronauts to see well enough to perform specific tasks. Specifically, tasks expected of astronauts at the LSP were not incorporated into system design requirements to enable system development that ensures functional vision in the expected lighting environment. Consequently, the spacesuit, for example, has flexibility requirements for allowing the astronauts to walk but not for ensuring they can see well enough to walk from brilliant Sun into a dark shadow and back without the risk of tripping or falling. Importantly, gaps were identified in allocation of requirements across programs to ensure that the role of the various programs is for each to understand functional vision. NESC recommendations were offered that made enabling functional vision in the harsh lighting environment a specific and new requirement for the system designers. The recommendations also included that lighting, window, and visor designs be integrated. The assessment team recommended that a wide variety of simulation techniques, physical and virtual, need to be developed, each with different and well-stated capabilities with respect to functional vision. Some would address the blinding effects of sunlight at the LSP (not easily achieved through virtual approaches) to evaluate performance of helmet shields and artificial lighting in the context of the environment and adaptation times. Other simulations would add terrain features to identify the threats in simple (e.g., walking, collection of samples) and complex (e.g., maintenance and operation of equipment) tasks. Since different facilities have different strengths, they also have different weaknesses. These strengths and limitations must be characterized to enable verification of technical solutions and crew training. NESC TB 2024- discipline-focus-hfView the full article
×
×
  • Create New...