Members Can Post Anonymously On This Site
-
Posts
6,190 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
iss070e001172 (Oct. 2, 2023) — Astronauts Andreas Mogensen of ESA (European Space Agency) and Loral O’Hara of NASA service spacesuits inside the Quest airlock. The duo took turns cleaning cooling loops inside the suits ahead of a spacewalk planned for Oct. 12 to collect microbe samples from specific areas outside of the International Space Station. Scientists want to analyze the types of microbes that may be able to survive the harsh environment of outer space.NASAView the full article
-
iss070e001174 (Oct. 2, 2023) — Astronauts Andreas Mogensen of ESA (European Space Agency) and Loral O’Hara of NASA service spacesuits inside the Quest airlock. The duo took turns cleaning cooling loops inside the suits ahead of a spacewalk planned for Oct. 12 to collect microbe samples from specific areas outside of the International Space Station. Scientists want to analyze the types of microbes that may be able to survive the harsh environment of outer space.NASAView the full article
-
iss070e001546 (Sept. 30, 2023) — Two lakes in Turkey, the larger Van Lake and the smaller Erçek Lake, are pictured from the International Space Station as it orbited 259 miles above the Eurasian region near the Caspian Sea.NASAView the full article
-
iss070e0017505 (Oct. 3, 2023) — (From left) Astronauts Andreas Mogensen from ESA (European Space Agency) and Satoshi Furukawa from JAXA (Japan Aerospace Exploration Agency) assist NASA astronaut Jasmin Moghbeli as she tries on her spacesuit and tests its components aboard the International Space Station’s Quest airlock in preparation for an upcoming spacewalk.NASAView the full article
-
iss070e0017543 (Oct. 3, 2023) — Expedition 70 Commander Andreas Mogensen from ESA (European Space Agency) assists NASA astronaut Jasmin Moghbeli as she tries on her spacesuit and tests its components aboard the International Space Station’s Quest airlock in preparation for an upcoming spacewalk.NASAView the full article
-
iss070e002029 (Oct. 4, 2023) — NASA astronaut and Expedition 70 Flight Engineer Loral O’Hara is pictured trying on her spacesuit and testing its components aboard the International Space Station’s Quest airlock in preparation for an upcoming spacewalk.NASAView the full article
-
iss070e002031 (Oct. 4, 2023) — ESA (European Space Agency) astronaut and Expedition 70 Commander Andreas Mogensen is pictured trying on his spacesuit and testing its components aboard the International Space Station’s Quest airlock in preparation for an upcoming spacewalk.NASAView the full article
-
iss070e002032 (Oct. 4, 2023) — NASA astronaut and Expedition 70 Flight Engineer Loral O’Hara is pictured trying on her spacesuit and testing its components aboard the International Space Station’s Quest airlock in preparation for an upcoming spacewalk.NASAView the full article
-
OSIRIS-REx Asteroid Sample Return lid opening at Building 31 Astromaterials Curation Facility. NASA Following a public unveiling of the United States’ first asteroid sample at 11 a.m. EDT Wednesday, Oct. 11, NASA will host a media teleconference and separate in-person interviews in English and Spanish with experts from the agency and the University of Arizona. The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security – Regolith Explorer) spacecraft capped its seven-year mission on Sunday, Sept. 24, with the delivery of a pristine sample of surface material from asteroid Bennu. The unveiling event at NASA’s Johnson Space Center in Houston will air live on NASA TV, the NASA app, and the agency’s website. The media teleconference will begin at 2:30 pm EDT and include members of the OSIRIS-REx science team. Audio of the call will stream live at: https://www.nasa.gov/nasatv In addition, subject matter experts are available for interviews beginning at 2:30 p.m. CDT (3:30 p.m. EDT), Oct. 11, in-person and remotely: Maritza Montoya, OSIRIS-REx sample processor, NASA Johnson (Spanish speaker) Ann Nguyen, OSIRIS-REx scientist, NASA Johnson Kimberly Allums, OSIRIS-REx Jacobs Engineering project lead, NASA Johnson Salvador Martinez III, OSIRIS-REx lead technology development engineer, NASA Johnson (Spanish speaker) Daniel Glavin, senior scientist, NASA’s Goddard Space Flight Center Dante Lauretta, OSIRIS-REx principal investigator, University of Arizona The following morning, subject matter experts also will be available for interviews beginning at 5:30 a.m. CDT (6:30 a.m. EDT) Oct. 12: Lindsay Keller, OSIRIS-REx scientist, NASA Johnson Maritza Montoya, OSIRIS-REx sample processor, NASA Johnson (Spanish speaker) Daniel Glavin, senior scientist, NASA Goddard Salvador Martinez III, OSIRIS-REx lead technology development engineer, NASA Johnson (Spanish speaker) Kathleen Vander Kaaden, NASA’s Science Mission Directorate chief scientist for astromaterials curation, NASA Headquarters Please contact the NASA Johnson newsroom for any of these opportunities at 281-483-5111 or jsccommu@mail.nasa.gov. Media interested in participating in the call must request participation no later than two hours prior to the start time, and are asked to dial-in 15 minutes early as well. The deadline to request in-person or remote one-on-one interviews is Friday, Oct. 6. In between the OSIRIS-REx media events on Oct. 11, the agency also will host a prelaunch news conference at 1 p.m. to discuss its upcoming Psyche mission to a metal-rich asteroid. That event will air live on NASA TV, the NASA app, and the agency’s website. NASA Johnson houses the world’s largest collection of astromaterials from the solar system under one roof, including samples from asteroids, comets, Mars, the Moon, Sun, and dust from other stars. Scientists use world-class laboratories to perform research on planetary materials and the space environment to investigate the origin and evolution of our solar system and beyond. Learn more about the OSIRIS-REx mission at: https://www.nasa.gov/osiris-rex -end- Karen Fox / Alana Johnson Headquarters, Washington 202-358-1257 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov Shaneequa Vereen Johnson Space Center, Houston 281-483-5111 shaneequa.y.vereen@nasa.gov View the full article
-
8 Min Read Goddard Earth Science Projects Featured at the American Geophysical Union Welcome to the 2022 AGU It felt like the first day at a new school – scrambling out of the car in the carpool lane, backpacks swinging over our shoulders, then facing the large entryway of the new and daunting building. For a week in December, nearly 23,000 people roam the large Chicago convention center where the 2022 American Geophysical Union (AGU) Fall Meeting conference was held. I was one of those several thousand people. As a young professional who only recently graduated from college, this was my first conference, and an impressive one to start out on at that. I’ve always yearned for knowledge and had a desire to learn. AGU is one of the places where new information is never in short supply. That’s me, Erica, in the middle. And those other excited people are my work friends (also NASA communications folks). AGU is a hub for Earth science research presentations. Scientists from ranges of backgrounds gather at the conference annually to share, discuss, and disseminate information on a wide variety of topics all relating back to one thing we all have in common – Earth. Topics span from global environmental change and natural hazards to atmospheric sciences and ocean sciences, and much more. To research those topics, scientists need data. So much of that data about Earth comes from satellites that are way up in space, looking back at the planet where they were made. And that’s where my job comes in. I’m the staff writer for the Earth Science Projects Division at NASA’s Goddard Space Flight Center. I have the unique privilege of working with the people who design and build many of those spacecraft and instruments that are up in space, delivering crucial data. Eventually, those data get pulled into intense geoscience research, and for many of those researchers, the AGU conference is the pinnacle of platforms. Dr. Tom Neumann, Deputy Director of the Earth Sciences Division at NASA Goddard Space Flight Center speaks at the AGU 2022 After it was confirmed that I was going, both excitement and nerves fell into place. Colleagues who had attended the conference before me offered their thoughts and recommendations, and almost every person acknowledged a key feature to the conference: its size. “It’s huge!” “It’s massive!” “There’s so much happening, and you’ll want to see it all – you won’t know where to start!” I always nodded and accepted their statements, but truly all I could think was that they must be exaggerating. How big could this conference really be? As I walked through the doors into the convention center, all notions of exaggeration fell away immediately. The hall was indeed massive and even though the conference had scarcely begun, there were crowds of people navigating the corridors just like I was. For as large as the hall was, it was filled to the brim with a feeling of excitement and a buzz of knowledge – so much so it was almost palpable. Walking though the poster hall, I was blown away by how many presentations shared the NASA symbol on their poster boards, and it brought me a sense of both humility and joy knowing that the work that I do is somehow connected to these scientists around me. Not only were there NASA scientists in attendance, but also student scientists who utilize Goddard data for their research. Dr. Doug Morton, chief of the Biospheric Sciences Laboratory at NASA’s Goddard Space Flight Center. Dr. Doug Morton, chief of the Biospheric Sciences Laboratory at NASA’s Goddard Space Flight Center. The Landsat series Landsat 9, the latest of the series, was developed at Goddard and launched in September 2021. With over 50 years of Landsat data and imagery available, the long timeline becomes a beneficial asset to many types of research. Nicole Abib, Ph.D. candidate at the University of Oregon, used the expanse of Landsat data for her research on the properties of ice mélange – dense packs of icebergs and sea ice – in Greenland’s fjords. With the time series of Landsat data, Abib relayed that she was able to visualize the ice mélange in the fjords, an important step in understanding how its properties vary around the ice sheet, and how this has or has not changed over time. Landsat data made frequent appearances in the rows of poster presentations in the cavernous hall. One poster easily caught the eyes of curious spectators, as well as my own, with the beautiful background imagery of snow. Chase Mueller, remote sensing data scientist and contractor to the U.S. Geological Survey, explained to onlookers about how Landsat data is an essential tool in learning about snowmelt runoff and its effects. The large timeline of data is valuable in creating models to help with the prediction of the phenomena. “This work aims to improve access to snow runoff modeling through the utilization of a commercial cloud compute environment while leveraging the higher resolution of Landsat data,” Mueller said. “It will help users better characterize the role of high mountain snowpacks on regional water supplies.” Ice, Cloud, and land Elevation Satellite-2 Across the convention center (an actual 10-minute walk away yet all in the same building, just another reminder of how huge this conference is), another mission with an impressive timeline shares how its data has been used in variation for different topics of research. The four-plus years of elevation data from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission have provided an extensive amount of data – the latitude, longitude, and height for every laser photon sent down to Earth and received back by the satellite. Nicole Abib, Ph.D. candidate at the University of Oregon. “The real power of this data is the aggregation of data over space and time,” said Tom Neumann, project scientist for ICESat-2 at Goddard, said during a town hall on the mission. With the limitations of time being the only reason why the town hall didn’t last hours to discuss all the research using ICESat-2 data, a few examples were presented to the group. The data helped reveal results on a range of topics, including sea ice thickness and a new record low for Antarctic Sea ice extent in February 2022. Spanning farther than just ice, ICESat-2 data also helped scientists understand canopy heights of the forests of Texas and Alabama, which are used to assess forest degradation and habitat suitability. As ICESat-2 continues orbiting and collecting data, the masses of data points will become even more accessible as it is transferred into the cloud. “With all the ICESat-2 data as well as many other satellite data now at your fingertips, we are approaching a new era of doing science,” said Thorsten Markus, cryosphere program scientist at NASA Headquarters in Washington, DC. As I absorbed as much information as possible walking around the convention center, I couldn’t help but to think about where this data originated, and what the future will look like as new and different satellites continue to collect more data. Missions that are just in the beginning stages – either being meticulously constructed by engineering teams or are even just a thought in the minds of scientists and engineers – will one day have presentations like these, and viewers like me ready to learn. Some researchers and data users are looking to future orbiting observatories for even more precise measurements, such as the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission, scheduled to launch in January 2024. Noah Sienkiewicz, Ph.D. candidate at the University of Maryland, Baltimore County. Shana Mattoo, a senior programmer at NASA Goddard, shared how she and her colleagues used a combination of Visible Infrared Imaging Radiometer Suite and Tropospheric Monitoring Instrument data to help prepare an algorithm for PACE’s Ocean Color Instrument, which will singlehandedly measure the full expanse of light wavelengths that that previously required a combination of datasets. Similarly, Noah Sienkiewicz, Ph.D. candidate at the University of Maryland, Baltimore County, explained to the audience how he used previous versions of the Hyper-Angular Rainbow Polarimeter (HARP) to help calibrate another PACE instrument, the new HARP2. Shana Mattoo, senior programmer at NASA Goddard Space Flight Center. Atmosphere Observing System A bit further into the future is the Atmosphere Observing System (AOS), part of the Earth System Observatory, a set of satellites all aiming to view Earth from different perspectives. AOS, though still early in its planning stages, will look to measure the aerosols, clouds, atmospheric convection, and precipitation in Earth’s atmosphere. The measurements will ultimately help the understanding of weather and climate. I only was able to glimpse what this conference had to offer, and though I tried to take in as much of it as possible, there is so much more out there for me to learn, and I am eager to do so. Though the conference itself was expansive, there’s a whole world out there to cover, and each of these presentations, posters, or sessions highlighted details of our home planet and the universe beyond. The understanding of the planet grows as more research is completed, and the information provided by Goddard Earth science projects is essential to that growth. Erica McNamee Science Writer, Earth Science Projects Division View the full article
-
5 min read NASA’s Hubble Finds Bizarre Explosion in Unexpected Place This is an artist’s concept of one of brightest explosions ever seen in space. Called a Luminous Fast Blue Optical Transient (LFBOT), it shines intensely in blue light and evolves rapidly, reaching peak brightness and fading again in a matter of days, unlike supernovae which take weeks or months to dim. Only a handful of previous LFBOTs have been discovered since 2018. And they all happen inside galaxies where stars are being born. But this illustration shows that Hubble discovered the LFBOT flash seen in 2023 happened between galaxies. This only compounds the mystery of what these transient events are. Because astronomers don’t know the underling process behind LFBOTs, the explosion shown here is purely conjecture based on some known transient phenomenon. NASA, ESA, NSF’s NOIRLab, Mark Garlick , Mahdi Zamani A very rare, strange burst of extraordinarily bright light in the universe just got even stranger – thanks to the eagle-eye of NASA’s Hubble Space Telescope. The phenomenon, called a Luminous Fast Blue Optical Transient (LFBOT), flashed onto the scene where it wasn’t expected to be found, far away from any host galaxy. Only Hubble could pinpoint its location. And, the results are leaving astronomers even more confounded. To start with, they don’t know what LFBOTs are. The Hubble results suggest they know even less by ruling out some possible theories. LFBOTs are among the brightest known visible-light events in the universe – going off unexpectedly like camera flashbulbs. Only a handful have been found since the first discovery in 2018 – an event located about 200 million light-years away that was nicknamed “the Cow.” Presently, LFBOTs are detected once per year. After its initial detection, the latest LFBOT was observed by multiple telescopes across the electromagnetic spectrum, from X-rays to radio waves. Designated AT2023fhn and nicknamed “the Finch,” the transitory event showed all the tell-tale characteristics of an LFBOT. It shined intensely in blue light and evolved rapidly, reaching peak brightness and fading again in a matter of days, unlike supernovae, which take weeks or months to dim. But unlike any other LFBOT seen before, Hubble found that the Finch is located between two neighboring galaxies – about 50,000 light-years from a nearby spiral galaxy and about 15,000 light-years from a smaller galaxy. “The Hubble observations were really the crucial thing. They made us realize that this was unusual compared to the other ones like that, because without the Hubble data we would not have known,” said Ashley Chrimes, lead author of the Hubble paper reporting the discovery in an upcoming issue of the Monthly Notices of the Royal Astronomical Society (MNRAS). He is also a European Space Agency Research Fellow, formerly of Radboud University, Nijmegen, Netherlands. A NASA Hubble Space Telescope image of a Luminous Fast Blue Optical Transient (LFBOT) designated AT 2023fhn, indicated by pointers. It shines intensely in blue light and evolves rapidly, reaching peak brightness and fading again in a matter of days, unlike supernovae which take weeks or months to dim. Only a handful of previous LFBOTs have been discovered since 2018. The surprise is that this latest transient, seen in 2023, lies at a large offset from both the barred spiral galaxy at right and the dwarf galaxy to the upper left. Only Hubble could pinpoint its location. And, the results are leaving astronomers even more confounded because all prevous LFBOTs have been found in star-formig regions in the spiral arms of galaxy. It’s not clear what astronomical event would trigger such a blast far outside of a galaxy. NASA, ESA, STScI, Ashley Chrimes (ESA-ESTEC/Radboud University) While these awesome explosions have been assumed to be a rare type of supernova called core-collapse supernovae, the gargantuan stars that turn into supernovae are short-lived by stellar standards. Therefore, the massive progenitor stars don’t have time to travel very far from their birthing place – a cluster of newborn stars – before exploding. All previous LFBOTs have been found in the spiral arms of galaxies where star birth is ongoing, but the Finch is not in any galaxy. “The more we learn about LFBOTs, the more they surprise us,” said Chrimes. “We’ve now shown that LFBOTs can occur a long way from the center of the nearest galaxy, and the location of the Finch is not what we expect for any kind of supernova.” The Zwicky Transient Facility – an extremely wide-angle ground-based camera that scans the entire northern sky every two days – first alerted astronomers to the Finch on April 10, 2023. Once it was spotted, the researchers triggered a pre-planned program of observations that had been on standby, ready to quickly turn their attention to any potential LFBOT candidates that arose. Spectroscopic measurements made with the Gemini South telescope in Chile found that the Finch is a scorching 36,000 degrees Fahrenheit. Gemini also helped determine its distance from Earth so its luminosity could be calculated. Together with data from other observatories including NASA’s Chandra X-ray Observatory and the National Science Foundation’s ground-based Very Large Array radio telescopes, these findings confirmed the explosion was indeed an LFBOT. The LFBOTs could be the result of stars being torn apart by an intermediate-mass black hole (between 100 to 1,000 solar masses). NASA’s James Webb Space Telescope‘s high resolution and infrared sensitivity might eventually be used to find that the Finch exploded inside a globular star cluster in the outer halo of one of the two neighboring galaxies. A globular star cluster is the most likely place an intermediate-mass black hole could be found. To explain the unusual location of the Finch, the researchers are considering the possibility that it is the result of a collision of two neutron stars, travelling far outside their host galaxy, that have been spiraling toward each other for billions of years. Such collisions produce a kilonova – an explosion 1,000 times more powerful than a standard supernova. However, one very speculative theory is that if one of the neutron stars is highly magnetized – a magnetar – it could greatly amplify the power of the explosion even further to 100 times the brightness of a normal supernova. “The discovery poses many more questions than it answers,” said Chrimes. “More work is needed to figure out which of the many possible explanations is the right one.” Because astronomical transients can pop up anywhere and at any time, and are relatively fleeting in astronomical terms, researchers rely on wide-field surveys that can continuously monitor large areas of the sky to detect them and alert other observatories like Hubble to do follow-up observations. A larger sample is needed to converge on a better understanding of the phenomenon, say researchers. Upcoming all-sky survey telescopes, such as the ground-based Vera C. Rubin Observatory, may be able to detect more, depending on the underlying astrophysics. The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C. Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Ray Villard Space Telescope Science Institute, Baltimore, MD Science Contact: Ashley Chrimes ESA-ESTEC/Radboud University, Nijmegen, Netherlands Share Details Last Updated Oct 05, 2023 Editor Andrea Gianopoulos Contact Related Terms Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From NASA Galaxies Stories Stars Stories Exoplanet Stories Eclipses Stories View the full article
-
NASA astronaut Woody Hoburg examines a recently unpacked Astrobee free-flying robot aboard the International Space Station. The Astrobee system is a research platform exploring how robots can maintain spacecraft. NASA The International Space Station is abuzz with the return of one of NASA’s Astrobee smart robots. The yellow Honey Astrobee, one of three free-flying robots, was unboxed in space after spending nearly a year at its home base, NASA’s Ames Research Center in California’s Silicon Valley. Honey returned to Earth in September 2022 for maintenance and repairs. NASA astronaut Woody Hoburg helped unpack Honey from its flight container and verified the robot was ready to get back to work. After initial checks, Honey was able to independently disengage from its docking station, maneuver through the space station’s Japanese Experiment Module (JEM), and re-dock successfully without crew supervision. The Astrobee Facility provides the orbiting laboratory with a robotic system for research and STEM (Science, Technology, Engineering, and Mathematics) outreach. Astrobee consists of three cubed-shaped robots, software, and a docking station used for recharging. The robots, which use electric fans as propulsion in the microgravity of the space station, aim to help manage routine spacecraft tasks so that astronauts can focus on jobs that only humans can perform. The project provides payload opportunities as well as guidance to users from academia, private industry, NASA, and other government agencies in the execution of approved research and STEM objectives. Astrobee was funded by NASA’s Game Changing Development Program, part of the Space Technology Mission Directorate. Ongoing funding is provided by NASA’s International Space Station Utilization Office. View the full article
-
NASA/JPL-Caltech/University of Arizona The Mars Reconnaissance Orbiter (MRO) captured this bit of ursine pareidolia on Dec. 12, 2022. While it resembles a bear we might see on Earth, this is actually a hill on Mars with a peculiar shape. A V-shaped collapse structure makes the nose, two craters form the eyes, and a circular fracture pattern shapes the head. The circular fracture pattern might be due to the settling of a deposit over a buried impact crater. Launched on August 12, 2015, the MRO studies the history of water on Mars and observes small-scale features on the planet’s surface. See more examples of pareidolia—the human tendency to see recognizable shapes in unfamiliar objects or data—from Mars. Image Credit: NASA/JPL-Caltech/University of Arizona View the full article
-
6 min read 6 Things to Know About NASA’s Asteroid-Exploring Psyche Mission This illustration depicts NASA’s Psyche spacecraft as it approaches the asteroid Psyche. Once it arrives in 2029, the spacecraft will orbit the metal-rich asteroid for 26 months while it conducts its science investigation. The first-ever mission to study a metal-rich asteroid, Psyche aims to help scientists learn more about the formation of rocky bodies in our solar system. With a launch readiness date set for Thursday, Oct. 12, NASA’s Psyche spacecraft will travel 2.2 billion miles from NASA’s Kennedy Space Center in Florida to a metal-rich asteroid in the far reaches of the main asteroid belt between Mars and Jupiter. Trailing a blue glow from its thrusters and powered by a pair of massive solar arrays, the orbiter will use its payload of science instruments to learn more about the asteroid Psyche. Here are six things to know about the mission: 1. Learning more about the asteroid Psyche could tell us more about the origins of our solar system. Based on data obtained by Earth-based radar and optical telescopes, scientists hypothesize that the asteroid Psyche could be part of the metal-rich interior of a planetesimal, a building block of a rocky planet that never formed. Psyche may have collided with other large bodies during its early formation and lost its outer rocky shell. Humans can’t bore a path to Earth’s metal core, so visiting Psyche could provide a one-of-a-kind window into the history of violent collisions and accumulation of matter that created planets like our own. Scientists hypothesize that the asteroid Psyche could be part of a building block of the rocky planets in our solar system. Studying it up close could help us understand how rocky planets formed. Join us on the journey to the first metal-rich asteroid humankind has ever visited. Credit: NASA/JPL-Caltech/ASU 2. The asteroid could also suggest a different story of how solar system objects formed. While rocks on Mars, Venus, and Earth are flush with iron oxides, Psyche’s surface doesn’t seem to feature much of these chemical compounds. This suggests that Psyche’s history differs from standard stories of planetary formation. If the asteroid proves to be leftover core material from a planetary building block, scientists will learn how its history resembles and diverges from that of the rocky planets. And if scientists discover that Psyche is not an exposed core, it may prove to be a never-before-seen kind of primordial solar system object. 3. Three science instruments and a gravity science investigation will help sort out these solar system origin stories and more. The spacecraft’s magnetometer will look for evidence of an ancient magnetic field at the asteroid Psyche. A residual magnetic field would be strong evidence the asteroid formed from the core of a planetary body. The orbiter’s gamma-ray and neutron spectrometer will help scientists determine the chemical elements that make up the asteroid – and better understand how it formed. The spacecraft’s multispectral imager will provide information about the mineral composition of Psyche as well as its topography. The mission’s science team will harness the telecommunications system to conduct gravity science. By analyzing the radio waves the spacecraft communicates with, scientists can measure how the asteroid Psyche affects the spacecraft’s orbit. That information will help them determine the asteroid’s rotation, mass, and gravity field, offering additional insights into the composition and structure of the asteroid’s interior. 4. The spacecraft will use a very efficient propulsion system for the first time beyond the Moon. Powered by Hall-effect thrusters, Psyche’s solar electric propulsion system harnesses energy from large solar arrays to create electric and magnetic fields. These, in turn, accelerate and expel charged atoms, or ions, of a propellant called xenon (a neutral gas used in car headlights and plasma TVs) at such high speed, it creates thrust. The ionized gas, will emit a sci-fi-like blue glow as it trails behind Psyche in space. Each of Psyche’s four thrusters, which will operate one at a time, exert the same amount of force that you would feel holding three quarters in the palm of your hand. In the frictionless void of space, the spacecraft will slowly and continuously accelerate. This propulsion system builds on similar technologies used by NASA’s Dawn mission, but Psyche will be the agency’s first mission to use Hall-effect thrusters in deep space. 5. Psyche is a collaboration. The mission draws on resources and know-how from NASA, universities, and industry. The principal investigator, Lindy Elkins-Tanton, is based at Arizona State University. By enabling collaboration with students nationwide, the partnership offers opportunities to train future instrument and mission leads in science and engineering, and to inspire student projects involving art, entrepreneurship, and innovation. Over a dozen other universities and research institutions are represented on the mission team. NASA’s Jet Propulsion Laboratory in Southern California manages the mission for the agency’s Science Mission Directorate in Washington. Managed for NASA by Caltech in Pasadena, JPL is also responsible for system engineering, integration and test, and mission operations. NASA’s Launch Services Program at Kennedy Space Center manages launch operations and procured the SpaceX Falcon Heavy rocket. Maxar Technologies’ team in Palo Alto, California, delivered the solar electric propulsion chassis – the main body of the spacecraft – and most of its engineering hardware systems. 6. The Psyche mission wants you to be part of the journey, too. Space exploration is for everyone. The mission’s “get involved” webpage highlights activities and opportunities, including an annual internship for college students to interpret the mission through artistic and other creative works, as well as classroom lessons, craft projects, and videos. Information on how to participate in a virtual launch experience is at nasa.gov/specials/virtualguest/. The mission websites nasa.gov/psyche and psyche.asu.edu will post official news about the spacecraft’s journey. NASA and ASU will also post regular social media updates on Facebook, Instagram, and X. NASA’s Eyes on the Solar System, a free web-based 3D visualization tool, will track the location of the spacecraft in real time. Visit go.nasa.gov/45k0OVY to see where Psyche is in the solar system. About two months after launch, as the team performs an initial checkout of the spacecraft and science instruments, the mission expects to receive its first images. Once the team confirms the imager is functioning as expected, a webpage will feature the unprocessed, or raw, images flowing straight from the spacecraft. Psyche Press Kit More About the Mission A technology demonstration called Deep Space Optical Communications (DSOC) will fly on Psyche in order to test high-data-rate laser communications that could be used by future NASA missions. JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate. Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. For more about the mission, go to: http://www.nasa.gov/psyche News Media Contacts Gretchen McCartney Jet Propulsion Laboratory, Pasadena, Calif. 818-393-6215 gretchen.p.mccartney@jpl.nasa.gov Karen Fox / Alana Johnson NASA Headquarters, Washington 301-286-6284 / 202-358-1501 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov 2023-141 Share Details Last Updated Oct 05, 2023 Related Terms Psyche AsteroidPsyche MissionThe Solar System Explore More 2 min read NASA Invites Public to Share in Excitement of Psyche Mission Article 1 day ago 5 min read Clues to Psyche Asteroid’s Metallic Nature Found in SOFIA Data Article 3 days ago 3 min read NASA’s New Horizons to Continue Exploring Outer Solar System Article 6 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
The Sun and Moon will work together to put on a celestial show in the skies above North America during two solar eclipses in the months to come. On Saturday, Oct. 14, the Moon will nearly cover the Sun during what’s called an annular solar eclipse, and on April 8, 2024, the Moon will completely block out the Sun during a total solar eclipse. Get ready to make the most of these rare events with this curated list of NASA STEM learning resources and related content, including activities, citizen science opportunities, and more. Safety First! First things first! It’s important never to look directly at the Sun, even during a solar eclipse. Protect your eyes with specialized solar viewers, such as eclipse glasses or view the event with a pinhole projector check out these video instructions on how to make your own. You can learn more about eclipse viewing safety here. What You’ll See During the annular solar eclipse on Oct. 14, the Moon will appear smaller when it slips in front of the Sun’s disk, leaving a ring of sunlight visible for people on the main path of the eclipse. During the total solar eclipse in April, the Moon will fully block the Sun for a brief time for people on the main path of this eclipse. For both eclipses, people in most of the U.S. can see a partial solar eclipse, even if you’re not on the eclipse’s main path. Wondering how much of the Sun will be blocked by the Moon where you are? Use this map to find out what the view will be like in your area, since the eclipses will take different paths as they cross the United States. Learn What’s Happening Students are invited to visit NASA’s Space Place for a helpful overview of eclipses and a deeper look at what happens during a total solar eclipse. Learn even more through fun hands-on activities such as How Can the Little Moon Hide the Giant Sun and the solar eclipse beach ball demonstration. Looking for books? Read “Our Very Own Star,” or the Braille book “Getting a Feel for Eclipses,” available in English and Spanish. Educators can bring solar eclipse learning into the classroom with eclipse lessons from My NASA Data, the Epic Eclipse: A “Pi in the Sky” math challenge, and the Living With a Star educator guide, which explores the Sun-Earth connection. Other fun activities include learning how to measure solar energy during the eclipse, taking the new NASA Eclipse Kahoot! Quiz modeling the Earth-Moon system. Be an Eclipse Scientist Anyone can become a citizen scientist and contribute their eclipse observations! Here are two exciting opportunities: Eclipse Soundscapes: Share your multi-sensory observations and recorded sound data during the upcoming eclipses to help NASA better understand how these events impact ecosystems across the U.S. Learn more about the different options to get involved. GLOBE Eclipse: Only available when a solar eclipse is happening somewhere in the world, the GLOBE Eclipse tool will prompt users to record air temperature measurements in addition to observations of sky conditions and vegetation at the data collection site. You’ll need to download the GLOBE App to get started. For the latest fun activities, learning resources, and opportunities to engage with NASA, visit NASA’s Office of STEM Engagement online at: https://stem.nasa.gov View the full article
-
2 min read Hubble Captures Starry Cetus Constellation Galaxy NASA’s Hubble Space Telescope, ESA, R. Chandar (University of Toledo), and J. Lee (Space Telescope Science Institute); Processing: Gladys Kober (NASA/Catholic University of America) Hubble is sharing a brand new galaxy image every day through October 7, 2023! Visit our website daily, or follow along on X, Facebook, and Instagram. New and old stars alike twinkle in the dusty spiral arms of NGC 1087. Located 80 million light-years away in the constellation Cetus, NGC 1087 is a barred spiral galaxy. It has a diameter of 87,000 light-years and a very small nucleus, or center. The galaxy’s dust lanes, seen in dark red, help define its spiral structure. NGC 1087’s stellar bar – the elongated, bright-white structure at the galaxy’s center – is also shorter compared to other barred galaxies. Typically, in barred galaxies, the gravity of the center pulls in large quantities of gas, causing a burst of star formation followed by a slow decay. Uniquely, NGC 1087 shows signs of new star formation, making it of special interest to scientists. British astronomer William Herschel discovered NGC 1087 in 1785. The galaxy sits just south of the celestial equator, making it visible from both hemispheres. In 1995, astronomers discovered a Type II supernova within this galaxy. Type II supernovae occur when a massive star uses all of its nuclear fuel and its iron core collapses, then explodes. Named 1995V, it is the only supernova ever seen in this galaxy. In this new ultraviolet, visible, and near-infrared light image from NASA’s Hubble Space Telescope, the dark red streaks are cold molecular gas, the raw material from which stars form. The spots of bright pink signal areas where new stars are forming, characterized by the presence of ionized hydrogen, oxygen, and sulfur. The bluer regions hold hot, young stars formed earlier in the lifetime of this galaxy. Hubble observed NGC 1087 to study the connection between young stars and cold gas, and especially to determine what happens to gaseous regions after stars are formed within them. See the new images and learn more about galaxies Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Oct 05, 2023 Editor Andrea Gianopoulos Contact Related Terms Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Science Mission Directorate Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA Stars Stories Galaxies Stories Exoplanets Our Solar System View the full article
-
Technicians connected NASA’s Psyche spacecraft to the payload attach fitting inside the clean room at Astrotech Space Operations facility in Titusville, Florida on Wednesday, Sept. 20, 2023. This hardware allows Psyche to connect to the top of the rocket once secured inside the protective payload fairings. Psyche will lift off on a SpaceX Falcon Heavy rocket at 10:34 a.m. EDT Thursday, Oct. 5, 2023, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The Psyche spacecraft will travel nearly six years and about 2.2 billion miles (3.6 billion kilometers) to an asteroid of the same name, which is orbiting the Sun between Mars and Jupiter. Scientists believe Psyche could be part of the core of a planetesimal, likely made of iron-nickel metal, which can be studied from orbit to give researchers a better idea of what may make up Earth’s core.NASA NASA will provide coverage of the upcoming prelaunch and launch activities for its Psyche mission to a metal-rich asteroid. Launch is targeted for 10:16 a.m. EDT Thursday, Oct. 12, on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Live launch coverage without commentary will begin at 9:15 a.m. EDT on the NASA Television media channel. The live launch broadcast with commentary will begin at 9:30 a.m., and will air on YouTube, X, Facebook, Twitch, Daily Motion, the NASA app, and the agency’s website. NASA TV’s public channel will be airing coverage of a spacewalk outside the International Space Station. Prior to launch, NASA will hold a mission and science briefing at 12 p.m. on Tuesday, Oct. 10, and a prelaunch news conference at 1 p.m. on Wednesday, Oct. 11. Watch coverage on NASA TV, the NASA app, and the agency’s website at: https://nasa.gov/nasatv NASA is sending the spacecraft to an asteroid named Psyche, which orbits the Sun between Mars and Jupiter, to learn how Earth and other rocky planets formed. This will be the first mission to an asteroid with substantial amounts of metal, as previous missions have explored asteroids made mostly of rock or ice. The asteroid Psyche may be part of the interior of a planetesimal, a building block of a rocky planet. By studying it, scientists seek to determine whether the asteroid was a planetary core. Attached to the Psyche spacecraft is a technology demonstration, NASA’s Deep Space Optical Communications. This experiment will test the ability of lasers to transmit data at increased rates beyond the Moon. High-bandwidth optical communications to Earth will be tested during the first two years of the spacecraft’s journey to Psyche. While the optical communications demonstration is hosted by Psyche, its transceiver will not relay Psyche mission data. Full coverage of this mission is as follows (all times Eastern): Tuesday, Oct. 10 9:30 a.m. – One-on-one media interviews at Kennedy with various mission subject-matter experts. Sign-up information will be emailed to media accredited to attend this launch in person. 12 p.m. – Psyche Mission and Science Briefing on NASA TV with the following participants: Lori Glaze, Planetary Science Division director, NASA Headquarters Lindy Elkins-Tanton, Psyche principal investigator, Arizona State University Ben Weiss, Psyche deputy principal investigator and magnetometer lead, Massachusetts Institute of Technology David Oh, Psyche chief engineer for operations, NASA’s Jet Propulsion Laboratory (JPL) Abi Biswas, Deep Space Optical Communications project technologist, JPL Media may request the news conference dial-in number and passcode by contacting the Kennedy newsroom no later than one hour prior to the start of the call at ksc-newsroom@mail.nasa.gov. Members of the public also may ask questions, which may be answered in real time during the segment, by using #AskNASA on social media. On-site media previously credentialed may attend the briefing in person or via telephone. Wednesday, Oct. 11 1 p.m. – Psyche Prelaunch News Conference on NASA TV with the following participants: NASA Associate Administrator Bob Cabana Nicola Fox, associate administrator, NASA’s Science Mission Directorate Tim Dunn, senior launch director, NASA’s Launch Services Program Julianna Scheiman, director, Civil Satellite Missions, SpaceX Henry Stone, Psyche project manager, JPL Arlena Moses, launch weather officer, U.S. Space Force Media may request the news conference dial-in number and passcode by contacting the Kennedy newsroom no later than one hour prior to the start of the call at ksc-newsroom@mail.nasa.gov. Members of the public also may ask questions, which may be answered in real time during the segment, by using #AskNASA on social media. On-site media may attend the briefing in person or via telephone. 2:30 p.m. – NASA Social Panel livestream at Kennedy. Watch live on YouTube and Facebook. 5 p.m. – NASA EDGE will host the Psyche rollout show live on NASA TV and YouTube. Thursday, Oct. 12 9:15 a.m. – Live launch coverage without commentary begins on NASA TV media channel. 9:30 a.m. – Live launch coverage with commentary begins on YouTube, X, Facebook, Twitch, Daily Motion, the NASA app, and the agency’s website. For NASA TV downlink information, schedules, and links to streaming video, visit: https://www.nasa.gov/nasatv NASA Website Launch Coverage Launch day coverage of NASA’s Psyche mission will be available on the agency’s website. Coverage will include blog updates and livestreaming beginning no earlier than 8 a.m. Streaming video and photos of the launch will be available shortly after liftoff. Images of Psyche’s processing and launch are available online. Follow countdown coverage on the Psyche launch blog at: https://blogs.nasa.gov/psyche Audio Only Coverage Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, “mission audio,” countdown activities without NASA TV launch commentary, will be carried on 321-867-7135 beginning at 9:15 a.m. Attend Launch Virtually Members of the public can register to attend the Psyche launch virtually. NASA’s virtual guest program for this mission includes curated launch resources, notifications about related opportunities or changes, and a stamp for the agency’s virtual guest passport following a successful launch. Watch, Engage Online Let people know you’re following the mission to a metal world. On Facebook, Instagram, and X, use the hashtag #MissionToPsyche and #AskNASA. You can also stay connected by following and tagging these accounts: Facebook: NASA, NASAKennedy, NASAJPL, NASALSP, NASASolarSystem Instagram: @NASA, @NASAKennedy, @NASAJPL, @NASASolarSystem X: @NASA, @NASAKennedy, @NASASocial, @NASAJPL, @NASA_LSP, @NASASolarSystem The spacecraft will travel almost six years, using a solar electric propulsion system and a gravity assist at Mars, to make the 2.2-billion-mile (3.6-billion-kilometer) journey to the asteroid. When it arrives, the spacecraft will orbit and observe the asteroid for about 26 months using a suite of instruments, including a multispectral imager, gamma-ray and neutron spectrometer, and magnetometer. The Psyche mission is led by Arizona State University. NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. NASA’s Launch Services Program, based at Kennedy, is managing the launch service. Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. JPL manages Deep Space Optical Communications for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the agency’s Space Operations Mission Directorate. For more information about Psyche, visit: https://www.nasa.gov/psyche -end- Alise Fisher / Alana Johnson Headquarters, Washington 202-617-4977 / 202-358-1501 alise.m.fisher@nasa.gov / alana.r.johnson@nasa.gov Leejay Lockhart Kennedy Space Center, Florida 321-747-8310 leejay.lockhart@nasa.gov Share Details Last Updated Oct 04, 2023 Related Terms Kennedy Space CenterNASA HeadquartersPsyche Asteroid View the full article
-
3 min read NASA Announces Teams for 2024 Student Launch Challenge NASA has announced the 70 teams representing 24 states and Puerto Rico selected to compete in the 2024 Student Launch Challenge. The annual competition – one of NASA’s nine Artemis Student Challenges – requires middle/high school and college/university students to design, build, and fly a high-powered amateur rocket and scientific payload. Students from the AIAA Orange Country Section team of Irvine, California, display their rocket to news media and the public during Rocket Fair – an annual showcase event of NASA’s Student Launch competition April 2023.NASA The nine-month-long challenge will culminate with on-site events April 10-14, 2024, with final launches April 13 at Bragg Farms in Toney, Alabama, just minutes north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. Teams are not required to travel for their final launch, having the option to launch from a qualified location in their hometown. Details are outlined in the Student Launch Handbook. Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of color on the Moon. Students will design a SAIL (STEMnaut Atmosphere Independent Lander) payload. It must deploy mid-air, safely return to the ground without using a parachute, and be reusable to launch the same day without repairs or modifications. The payload will contain a crew of four STEMnauts, non-living objects representing astronauts. Students will choose metrics to determine the endurance of the lander, considering acceptable descent and landing parameters. Student teams and attendees of NASA’s 2023 Student Launch competition observe a rocket take flight near NASA’s Marshall Space Flight Center in Huntsville, Alabama, April 2023.NASA University/college teams are required to meet the 2024 payload requirements set by NASA, but middle/high school teams have the option to tackle the same challenge or design their own payload experiment. Student teams will undergo detailed reviews by NASA personnel to ensure the safety and feasibility of their rocket and payload designs. All teams must declare their rocket’s targeted altitude for final launch day during a preliminary design review. The team closest to their target will win the Altitude Award, just one of multiple awards presented to deserving teams at the end of the competition. Other awards include overall winner, vehicle design, experiment design, social media presence, and more. In addition to the engineering and science side of the competition, students must also participate in outreach efforts such as engaging with local schools and maintaining effective social media accounts. Student Launch is an all-encompassing challenge and aims to prepare the next generation for the professional world of space exploration. The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies. For more information about Student Launch, visit: https://www.nasa.gov/stem/studentlaunch/home/index.html For more information about other NASA challenges, please visit: https://stem.nasa.gov/artemis/ Christopher Blair Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 christopher.e.blair@nasa.gov View the full article
-
NASA Ames’ Contributions to OSIRIS-REx by Gianine Figliozzi Extraterrestrial rocks and dust – material scooped up from an asteroid – were delivered to Earth on Sept. 24, 2023. A safe landing in the Utah desert for the spacecraft carrying this bounty marked the end of a seven-year journey for NASA’s OSIRIS-REx – short for the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer – and the start of two intensive years of sample analysis activities for mission scientists on Earth. Over the coming decades, scientists around the world will study the rocks and dust collected from the asteroid Bennu to learn about the formation of the solar system and the delivery of organic molecules to early Earth. Artist’s conception of NASA’s OSIRIS-REx about to land on asteroid Bennu.Credit: NASA Bennu is also one of the most potentially hazardous asteroids for Earth impact, although the chances of impact in the 22nd century are only one in 1,750. Understanding the physical and chemical properties of asteroids like Bennu will be critical, should humanity need to mitigate impact hazards in the future. Teams at NASA Ames have played critical roles in preparing the mission for success and will continue to work on the OSIRIS-REx samples once they arrive. They helped design ways for the mission to collect high-quality samples, preserve them in pristine form, and develop a plan for the scientific community to study the essentially irreplaceable asteroid material. Ames experts also advised the mission on its thermal protection system – notably the heat shield that will protect the sample return capsule from the blistering heat of passing through Earth’s atmosphere. Read on for more details of Ames’ contributions to OSIRIS-REx. Preparing for an Asteroid Sample: From Canister to Curation Ames researcher Scott Sandford has been involved with OSIRIS-REx since the earliest days of the mission. A major area of his work was in the design and testing of the air filter system on the sample return canister that has housed the precious asteroid material during its journey to Earth and will protect it from contamination when it lands on the surface. The canister’s air filter was tested in Sandford’s lab before the mission launched. It will keep earthly contaminants out of the sample and, if the asteroid material is releasing any gases, the filter will trap them. If that’s happening, scientists could identify some components of Bennu. Sandford will coordinate a group of scientists in labs around the world to analyze the air filter after its return to Earth. Sandford also leads the effort to analyze many components of the sample return capsule, both to assess potential sources of contamination in the samples and to assess the performance of the capsule. Sandford’s sample curation work helped plan how the unique material from Bennu will be used. Three-quarters of it will be made available for study over the coming decades, while the remaining 25% may be distributed to researchers in efficient ways that let them address the mission’s scientific questions. Withstanding the Heat of Earth Entry The heat shield thermal protection system (TPS) is made of a material developed at Ames: phenolic-impregnated carbon ablator (PICA). PICA was first flown on NASA’s Stardust mission, which also delivered extraterrestrial material to Earth – from a comet. The Stardust sample return capsule was nearly identical to that of OSIRIS-REx, so the latter mission was able to use the Earth-entry, descent, and landing systems successfully demonstrated by the earlier mission. Reusing many features of the Stardust capsule design, adjusted for the specific needs of the mission to Bennu, allowed OSIRIS-REx to reduce costs and the thermal protection team to leverage what they had learned from Stardust. The OSIRIS-REx spacecraft’s heat shield is made of a material developed at Ames: phenolic-impregnated carbon ablator (PICA). In this photo, PICA is undergoing testing in Ames’ arc jet facility, which simulates atmospheric re-entry conditions, to confirm thermal protection performance for the heat shield’s design.Credit: NASA They then worked with mission partner Lockheed Martin Space – who designed and built the spacecraft and capsule – to integrate the air filter and PICA elements onto the mission. Ames helped qualify the PICA to withstand the extremely high temperatures experienced upon entering Earth’s atmosphere. They provided guidance to the mission on the PICA thickness needed to protect the samples and tested the heat shield material under simulated atmospheric re-entry conditions in Ames’ arc jet facilities to confirm thermal protection performance for the design. Ames experts in computational fluid dynamics supplied analysis that validated the aerothermal environments used in those tests. Soon after the spacecraft returns, members of Ames’ thermal protection team also plan to laser-scan the OSIRIS-REx heat shield in coordination with colleagues at NASA’s Johnson Space Center in Houston, Lockheed Martin, or both. What they learn about PICA’s performance, relative to predictions, can support future missions such as Mars Sample Return, that will return samples collected by NASA’s Mars Perseverance rover to Earth in the future. Asteroid Sample Science When the OSIRIS-REx capsule lands in the Utah desert, researcher Scott Sandford will be on the ground to help retrieve it. The chances of contaminants like soil and water entering the sample canister inside are extremely low. But, to be absolutely certain no one accidentally studies terrestrial materials thinking they are samples from Bennu, he will help collect samples from the environment where the capsule lands, for comparison with the asteroid material. Later, Sandford will perform scientific studies of the Bennu samples themselves. His study will focus on two areas. He’ll assess what, if any, spacecraft-related contaminants got into the samples, such as material coming off the heat shield as it ablated, or “burned off,” during atmospheric entry. Sandford will also probe the samples for any organic compounds. Scientists estimate that Bennu is 4.5 billion years old and contains well-preserved materials, including complex organics, from the early solar system. Finding organics could tell us something about what roles materials of the early solar system may have played in delivering organic “ingredients of life” to the early Earth. The techniques Sandford uses will allow him to search for compounds inside the Bennu samples. At Ames he’ll use infrared microspectroscopy to detect various kinds of organics in the samples that contain carbon, hydrogen, nitrogen, and oxygen. He will also work with colleagues to study samples using the Advanced Light Source facility, a specialized particle accelerator that generates bright beams of X-ray light for scientific research, located at Lawrence Berkeley National Laboratory in Berkeley, California. Both techniques provide information about the kinds of chemical bonds present in the samples’ organic compounds. HORIS: A Study of Atmospheric Entry NASA’s Langley Research Center in Hampton, Virginia, will manage an experiment taking advantage of the OSIRIS-REx sample arrival to study characteristics of re-entry through an atmosphere. Four aircraft and teams at three ground sites will track the capsule’s trajectory on its way to the surface, using imaging and spectroscopy instruments. Data from the project, called Hypervelocity OSIRIS-REx Reentry Imaging & Spectroscopy (HORIS), will be used to validate and develop planetary entry models. Recovery teams participate in field rehearsals in preparation for the retrieval of the asteroid sample return capsule from NASA’s OSIRIS-REx mission, Tuesday, July 18, 2023, at the Department of Defense’s Utah Test and Training Range. NASA Ames researcher Scott Sandford, second from left, who has been involved with OSIRIS-REx since the earliest days of the mission, will participate in retrieval of the capsule when it lands in the desert on Sep. 24 and, later, will perform scientific studies of the samples from asteroid Bennu.Credit: NASA Ames/Keegan Barber NASA’s Earth Science Project Office (ESPO), based at Ames, will provide operational and shipping support to two international ground teams by setting up work sites at three different locations in northern Nevada. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx, including processing the sample when it arrives on Earth, will take place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (the Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (the Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. Congratulations to the 2023 Ames Honor Awards Recipients The honorees will be recognized at the center’s annual Ames Honor Awards ceremony to be held in person on Nov. 1, in the Syvertson Auditorium (N201) at 11 a.m. PDT. Employees are invited to attend as we celebrate, recognize, and honor the achievements of our colleagues. Thank you to everyone who submitted a nomination for this prestigious award, and congratulations to the deserving recipients Recipients of the 2023 Ames Honor Awards: Administrative Assistant Support/Secretary Lyn C. Bartlett Administrative Professional Erin K. Contreras Trincy D. Lewis Vanessa R. Westmoreland Best First Paper Dahlia D. Pham Evan T. Kawamura Contractor Employee Sonja M. Caldwell, KBR Athena Chan, Science and Technology Corporation David Garcia Perez, Science and Technology Corporation Dominic Hart, MORI Associates Ignacio Gonzalo Lopez-Francos, KBR Taejin Park, Bay Area Environmental Research Institute Sasha V. Weston, Millennium Engineering & Integration Co. Louis W. Wust, InuTeq, LLC. Diversity, Equity, Inclusion and Accessibility Kevin L. Jones Garrett G. Sadler Dorsa Shirazi Juan L. Torres-Perez Education and Outreach Sarah A. Conley Denise R. Snow Engineer Rodolphe De Rosee Jesse C. Fusco Scott T. Miller Group/Team Alpha Jet Atmospheric eXperiment (AJAX) Project Team BioSentinel Mission Operations Team CapiSorb Visible System ISS Payload & Experiment ICEE Facility Team NASA Ames Utility Team Starling Team TechEdSat Nano Orbit Workshop TOSS 4 and RHEL8 Migration Team VIPER MGRU Rover Team Voluntary Protection Program Recertification Team Mentor Misty D. Davies Marcie A. Smith Gloria K. Yamauchi Partnerships Sigrid Reinsch Project Management Craig D. Burkhard Kelly E. Kwan Scientist or Researcher Thomas P. Greene Special Appreciation (Non-Ames Employees) Jeffrey F. Haught, NASA Headquarters Student Avraham S. Gileadi, NIFS Intern Stephanie I. Pass, Intern Shivang M. Shelat, SJSU Research Foundation Supervisor/Manager Susie Go Lynne H. Martin Kerry Zarchi Technical Support/Professional Randal L. Hobbs Robert W. Koteskey Yonghong Shen Technician Kevin B. Gregory Face of NASA: Protocol Officer Carolina Rudisel “I never would have imagined myself here at NASA. I’m an immigrant. I was originally a Mexican citizen. I was actually born in Mexico, but my parents came over to the U.S. [and I got my green card] when I was two. … My parents originally came over on a worker visa, and so we were migrant workers [when I was] growing up. “… I try to tell folks that it’s not where you started. It’s not the mistakes you’ve made. It’s what you do with it, and you can make that change not only for yourself but [also] so others can see you making the change and [know] that anything is possible.” — Carolina Rudisel, Protocol Officer, NASA’s Ames Research Center “… It was a rough upbringing, and so I knew what my life held for me if I stayed in [my] small town. I knew that I would be stuck, as even now, looking back, some of the people I knew are still stuck. So, I decided that I would join the military because I knew that, for myself, I needed to make a radical change. And so I joined the military, and my life completely turned around. … That’s where I met my husband. We’ve been together 32 years; we’ve been married for 29 years. “… [Before I joined] the military … I was on the wrong end of the law. I was literally standing in front of a judge who had my fate in their hands. … My recruiter happened to be at my hearing, and so we did a plea bargain and I was let off with a fine. But my life could have been completely different. So I knew the radical change was absolutely necessary for my life. “… Fast forward: [I] joined the military, got out, and ended up spending most of the time overseas. I lived in Japan — as a matter of fact, both our kids together were born in Japan. [We] lived in Japan, Russia, Sri Lanka, Belgium, and our last post was London. “… I worked for the Defense Attaché Office, and my co-worker was in the Navy and she was like, ‘There’s a job in NASA in Northern California! You’re from California, right? … You should apply.’ And I [thought], ‘There is no way.’ You know, I’m a businessperson, my background is in business. I was a finance budget analyst. And so, I was like, ‘There’s no way.’ She [said], ‘You should apply. Apply, apply, apply! The worst thing they could say is no.’ And I’m like, ‘You know what? You’re right.’ I applied, came to NASA, [and] actually started off here as the secretary for the center director. Clues to Psyche Asteroid’s Metallic Nature Found in SOFIA Data When the asteroid Psyche has its first close-up with a NASA spacecraft, scientists hypothesize they will find a metal-rich asteroid. It could be part or all of the iron-rich interior of a planetesimal, an early planetary building block, that was stripped of its outer rocky shell as it repeatedly collided with other large bodies during the early formation of the solar system. New research from scientists at NASA’s Ames Research Center in California’s Silicon Valley suggests that is exactly what the agency’s Psyche mission will find. An artist’s concept depicting the metal-rich asteroid Psyche, which is located in the main asteroid belt between Mars and Jupiter.Credit: NASA/JPL-Caltech/ASU Led by Anicia Arredondo, the paper’s first author and a postdoctoral researcher at the Southwest Research Institute in San Antonio, Texas, and Maggie McAdam, Ames research scientist and principal investigator, the team observed Psyche in Feb. 2022 using NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA). The now-retired observatory was a Boeing 747SP aircraft modified to carry a reflecting telescope. As a flying telescope, SOFIA collected data that was not affected by Earth’s lower atmosphere and made observations from all over the world, including over the oceans. For the first time, SOFIA was able to gather data from every part of Psyche’s surface. It also allowed the team to collect data about the materials that make up Psyche’s surface – information that could not be gathered from ground-based telescopes. The Ames team studied the way different wavelengths of light bounce off Psyche. Researchers used a mid-infrared camera, which detects wavelengths in the middle of the electromagnetic spectrum, to observe the asteroid. They measured its emissivity(the amount of energy it radiates) and porosity (how many tiny holes or spaces an object has). Both characteristics can provide clues about the materials that make up an object. The team observed that Psyche’s emissivity data was mostly flat, meaning there were no spikes or other notable features in its spectra – that is, a chart or a graph that shows the intensity of light the asteroid emits over a range of energies. Similarly flat spectra have been found in laboratory settings when mid-infrared instruments are used on metal objects. This led the researchers to conclude that Psyche is likely a metallic body. Notably, the team did not observe a spectral feature called the 10-micron plateau, which typically indicates a “fluffy” surface, like lunar regolith. Previous studies of Psyche had observed this feature, which suggests there may be differences between the surface at Psyche’s north pole, which was facing the Earth at the time of the Ames team’s study, and the surface at its south pole, which was the focus of previous studies. The team also proposed that the south pole regolith observed by other researchers could have been ejected from a collision elsewhere on Psyche’s surface. This idea is supported by past observations of Psyche, which found evidence of huge depressions and impact craters across the asteroid. “With this analysis and the previous studies of Psyche, we have reached the limit of what astronomical observations can teach us about this fascinating asteroid,” said McAdam. “Now we need to physically visit Psyche to study it up close and learn more about what appears to be a very unique planetary body.” NASA’s mission to Psyche will provide that opportunity. The spacecraft is set to launch on Oct. 12, 2023. It will arrive at the asteroid in 2029 and orbit it for at least 26 months. NASA’s Psyche spacecraft is shown in a clean room on June 26, 2023, at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida.Credit: NASA/Frank Michaux Psyche’s potential to answer many questions about planet formation is a key reason why it was selected for close observation by a spacecraft. Scientists believe that planets like Earth, Mars, and Mercury have metallic cores, but they are buried too far below the planets’ mantles and crusts to see or measure directly. If Psyche is confirmed to be a planetary core, it can help scientists understand what is inside the Earth and other large planetary bodies. Psyche’s size is also important for advancing scientific understanding of Earth-like planets. It is the largest M-type (metallic) asteroid in our solar system and is long enough to cover the distance from New York City to Baltimore, Maryland. This means Psyche is more likely to show differentiation, which is when the materials inside a planet separate from one another, with the heaviest materials sinking to the middle and forming cores. “Every time a new study of Psyche is published, it raises more questions,” said Arredondo, who was a postdoctoral researcher at Ames on the SOFIA mission when the Psyche observations were collected. “Our findings suggest the asteroid is very complex and likely holds many other surprises. The possibility of the unexpected is one of the most exciting parts of a mission to study an unexplored body, and we look forward to gaining a more detailed understanding of Psyche’s origins.” More about the Psyche and SOFIA missions: Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, is managing the launch service. SOFIA was a joint project of NASA and the German Space Agency at DLR. DLR provided the telescope, scheduled aircraft maintenance, and other support for the mission. NASA’s Ames Research Center in California’s Silicon Valley managed the SOFIA program, science, and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart. The aircraft was maintained and operated by NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California. SOFIA achieved full operational capability in 2014 and concluded its final science flight on Sept. 29, 2022. President Biden Lands at NASA Ames, Greeted by Deputy Director President Joe Biden arrived in California’s Silicon Valley on Tuesday, Sept. 26, 2023, where he was welcomed by Dr. David Korsmeyer, acting deputy center director at NASA Ames and Santa Clara County Supervisor, District 4, Susan Ellenberg. Biden landed aboard Air Force One at Moffett Federal Airfield, located at Ames, before departing for a campaign event in the area. President Joe Biden arrived in California’s Silicon Valley on Tuesday, Sept. 26, 2023, where he was welcomed by Dr. David Korsmeyer, acting deputy center director at NASA’s Ames Research Center and Santa Clara County Supervisor, District 4, Susan Ellenberg.Credit: NASA Ames/Dominic Hart New Simulations Shed Light on Origins of Saturn’s Rings and Icy Moons by Frank Tavares On a clear night, with a decent amateur telescope, Saturn and its series of remarkable rings can be seen from Earth’s surface. But how did those rings come to be? And what can they tell us about Saturn and its moons, one of the potential locations NASA hopes to search for life? A new series of supercomputer simulations has offered an answer to the mystery of the rings’ origins – one that involves a massive collision, back when dinosaurs still roamed the Earth. Still image from a computer simulation of an impact between two icy moons in orbit around Saturn. The collision ejects debris that could evolve into the planet’s iconic and remarkably young rings. The simulation used over 30 million particles, colored by their ice or rock material, run using the open source SWIFT simulation code.Credit: NASA/Durham University/Glasgow University/Jacob Kegerreis/Luís Teodoro According to new research by NASA and its partners, Saturn’s rings could have evolved from the debris of two icy moons that collided and shattered a few hundred million years ago. Debris that didn’t end up in the rings could also have contributed to the formation of some of Saturn’s present-day moons. “There’s so much we still don’t know about the Saturn system, including its moons that host environments that might be suitable for life,” said Jacob Kegerreis, a research scientist at NASA’s Ames Research Center in California’s Silicon Valley. “So, it’s exciting to use big simulations like these to explore in detail how they could have evolved.” NASA’s Cassini mission helped scientists understand just how young – astronomically speaking – Saturn’s rings and probably some of its moons are. And that knowledge opened up new questions about how they formed. To learn more, the research team turned to the Durham University location of the Distributed Research using Advanced Computing (DiRAC) supercomputing facility in the United Kingdom. They modeled what different collisions between precursor moons might have looked like. These simulations were conducted at a resolution more than 100 times higher than previous such studies, using the open-source simulation code, SWIFT, and giving scientists their best insights into the Saturn system’s history. Saturn’s rings today live close to the planet, within what’s known as the Roche limit – the farthest orbit where a planet’s gravitational force is powerful enough to disintegrate larger bodies of rock or ice that get any closer. Material orbiting farther out could clump together to form moons. By simulating almost 200 different versions of the impact, the team discovered that a wide range of collision scenarios could scatter the right amount of ice into Saturn’s Roche limit, where it could settle into rings. And, while alternative explanations haven’t been able to show why there would be almost no rock in Saturn’s rings – they are made almost entirely of chunks of ice – this type of collision could explain that. “This scenario naturally leads to ice-rich rings,” said Vincent Eke, Associate Professor in the Department of Physics/Institute for Computational Cosmology, at Durham University and a co-author on the paper. “When the icy progenitor moons smash into one another, the rock in the cores of the colliding bodies is dispersed less widely than the overlying ice.” Ice and rocky debris would also have hit other moons in the system, potentially causing a cascade of collisions. Such a multiplying effect could have disrupted any other precursor moons outside the rings, out of which today’s moons could have formed. But what could have set these events in motion, in the first place? Two of Saturn’s former moons could have been pushed into a collision by the usually small effects of the Sun’s gravity “adding up” to destabilize their orbits around the planet. In the right configuration of orbits, the extra pull from the Sun can have a snowballing effect – a “resonance” – that elongates and tilts the moons’ usually circular and flat orbits until their paths cross, resulting in a high-speed impact. Saturn’s moon Rhea today orbits just beyond where a moon would encounter this resonance. Like the Earth’s Moon, Saturn’s satellites migrate outward from the planet over time. So, if Rhea were ancient, it would have crossed the resonance in the recent past. However, Rhea’s orbit is very circular and flat. This suggests that it did not experience the destabilizing effects of the resonance and, instead, formed more recently. The new research aligns with evidence that Saturn’s rings formed recently, but there are still big open questions. If at least some of the icy moons of Saturn are also young, then what could that mean for the potential for life in the oceans under the surface of worlds like Enceladus? Can we unravel the full story from the planet’s original system, before the impact, through to the present day? Future research building on this work will help us learn more about this fascinating planet and the icy worlds that orbit it. View the full article
-
1 min read OSIRIS-REx Landing Highlighted on ‘This Week at NASA’OSIRIS-REx Landing Highlighted on ‘This Week at NASA’OSIRIS-REx Landing Highlighted on ‘This Week at NASA’ On Sept. 24, the OSIRIS-REx sample return capsule – with samples of rock and dust from asteroid Bennu – made its historic return to Earth, marking the end of NASA’s first sample return mission. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online. The next day, the sample return capsule was flown to NASA’s Johnson Space Center, where the sample material inside it will be cared for, stored, and shared with scientists around the world. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate in Washington. Read more about Marshall’s role in OSIRIS-REx. View this and previous episodes at “This Week @NASA” on NASA’s YouTube page. View the full article
-
1 min read Ceremony Marks Opening of NASA Educational Display at New Orleans Airport Representatives from NASA’s Michoud Assembly Facility joined elected officials and other community leaders for a ribbon-cutting ceremony marking the opening of a NASA educational display Sept. 26 at Louis Armstrong International Airport in New Orleans. From left, New Orleans Airport Director Kevin Dolliole, New Orleans Director of Economic Development Jeff Schwartz, Space Launch System Stages Element Office Resident Management Office Manager Gregg Eldridge, Congressman Carter’s District Director Demetric Mercadel, Michoud Director Lonnie Dutreix, New Orleans Mayor LaToya Cantrell, Judge Michael Bagneris, New Orleans & Co. Executive Vice-President Alice Glenn, New Orleans Business Alliance Interim President Louis David, and GNO Inc. Senior Vice-President of Business Development Josh Fleig cut the ribbon at the NASA educational display ribbon-cutting ceremony at Louis Armstrong International Airport in New Orleans. NASA/Michael DeMocker The exhibit is a collaboration between NASA, the city of New Orleans, and regional economic development organizations to educate visitors on the role Michoud has played in the production of manned spacecraft and Michoud’s impact on economic development for the region. The exhibit is located near the airport’s baggage claim on the first floor. Michoud serves as America’s “rocket factory,” manufacturing and assembling NASA’s SLS (Space Launch System) core stages and Exploration Upper Stage, and the Orion crew module. Michoud is managed by NASA’s Marshall Space Flight Center. View the full article
-
Astronaut Raja Chari is ready for taco night as he shows off a taco made with fresh chile peppers.NASA/Kayla Barron Taco Night on the International Space Station had a little kick to it on Nov. 26, 2021. In this image taken by NASA astronaut Kayla Barron, fellow NASA astronaut and Expedition 66 flight engineer Raja Chari smiles as he shows off a taco that includes fresh chile peppers. The peppers were harvested from inside the International Space Station’s Advanced Plant Habitat, which started growing four months prior as part of the Plant Habitat-04 experiment. Astronauts on station and a team of researchers at Kennedy worked together to check the peppers’ growth. This was one of the longest and most challenging plant experiments tried aboard the orbital lab. Starting in late 2015 and going into early 2016, astronauts grew zinnias on station – a precursor to growing longer-duration, fruit-bearing, flowering crops like peppers. Researchers spent two years evaluating more than two dozen pepper varieties from around the world. They narrowed it down and selected the NuMex ‘Española Improved’ pepper, a hybrid Hatch pepper, the generic name for several varieties of chiles from Hatch, New Mexico, and the Hatch Valley in southern New Mexico. This pepper performed well in testing and had the makings of a viable space crop. Image Credit: NASA/Kayla Barron View the full article
-
El astronauta Frank Rubio, de la Expedición 69 de la NASA, es visto fuera de la nave espacial Soyuz MS-23 tras aterrizar junto a los cosmonautas de Roscosmos Sergey Prokopyev y Dmitri Petelin en una zona remota cerca de la ciudad de Zhezkazgan, Kazajstán, el miércoles 27 de septiembre de 2023. El trío regresó a la Tierra tras pasar 371 días en el espacio como miembros de las Expediciones 68-69 a bordo de la Estación Espacial Internacional. Para Rubio, su misión es el vuelo espacial más largo realizado por un astronauta estadounidense en la historia.NASA/Bill Ingalls El astronauta de la NASA Frank Rubio, de regreso a la Tierra tras batir el récord del vuelo espacial individual más largo de la historia realizado por un estadounidense, participará en una rueda de prensa el viernes 13 de octubre a las 2 p.m. EDT (hora de verano del Este), en el Centro Espacial Johnson de la agencia en Houston. La conferencia de prensa (en inglés) se retransmitirá en directo por NASA Television, la aplicación de la NASA y el sitio web de la agencia. Síguelo en línea en: https://www.nasa.gov/nasatv La misión extendida de Rubio a bordo de la Estación Espacial Internacional sumó un total de 371 días en el espacio. Las misiones prolongadas brindan a la comunidad científica la oportunidad de observar mejor los efectos de los vuelos espaciales de larga duración en los astronautas, ahora que la agencia vuelve a la Luna mediante las misiones Artemis y se prepara para la exploración de Marte con seres humanos. Los medios de comunicación interesados en participar en persona en esta rueda de prensa deben ponerse en contacto con la sala de prensa de la NASA en Johnson antes de las 5 p.m. EDT del jueves 12 de octubre, llamando al 281-483-5111 o enviando un correo electrónico a: jsccommu@mail.nasa.gov. Los medios de comunicación que deseen participar virtualmente deberán ponerse en contacto con la sala de prensa a más tardar dos horas antes del comienzo del acto. La política de acreditación para medios de comunicación de la NASA está disponible en línea. También se pueden enviar preguntas a través de las redes sociales utilizando #AskNASA. Rubio despegó el 21 de septiembre de 2022 junto con los cosmonautas de Roscosmos Sergey Prokopyev y Dmitri Petelin. El trío regresó a la Tierra el 27 de septiembre. La misión de 371 días de Rubio es el vuelo espacial más largo realizado por un astronauta estadounidense, récord que hasta ahora ostentaba el astronauta de la NASA Mark Vande Hei, con 355 días. Rubio completó aproximadamente 5.936 órbitas de la Tierra y un viaje de más de 157 millones de millas durante este vuelo espacial (el primero para él), aproximadamente el equivalente a 328 viajes de ida y vuelta a la Luna. Fue testigo de la llegada de 15 naves espaciales y de la partida de tras 14 astronaves en misiones de carga tripuladas y no tripuladas. Durante su misión récord, Rubio dedicó muchas horas a actividades científicas a bordo de la estación espacial, realizando tareas variadas que iban desde investigaciones sobre la salud humana a investigaciones con plantas. Un estudio evaluó el manejo de múltiples robots autónomos desde el espacio y los retos que podría plantear el hacer funcionar remotamente a robots en órbita desde tierra. También cultivó tomates espaciales para poner a prueba técnicas de crecimiento hidropónico (a base de agua) y aeropónico (a base de aire) en lugar de tierra u otros medios de crecimiento tradicionales, con el fin de ayudar a identificar formas de producir cultivos a mayor escala para futuras misiones espaciales. Aprende más sobre las actividades de la estación espacial siguiendo las cuentas en inglés de X @space_station y @ISS_Research, o la cuenta en español @NASA_ES, así como las cuentas en inglés de Facebook e Instagram de la estación, o las cuentas en español de Facebook e Instagram de la NASA. Para más información (en inglés) sobre la Estación Espacial Internacional, su investigación y su tripulación, visita: https://www.nasa.gov/station -fin- Maria-jose Vinas Headquarters, Washington 202-358-1600 maria-jose.vinasgarcia@nasa.gov View the full article
-
3 min read Marshall Wins Award for Most Funds Raised During 2022 Combined Federal Campaign By Jessica Barnett NASA’s Marshall Space Flight Center was recently awarded for raising more funds than any other large federal agency in the Greater Tennessee Valley Zone during the 2022 CFC (Combined Federal Campaign). The CFC serves as the federal government’s only sanctioned charity fundraiser event, with civilian, military, contract, and postal employees all encouraged to contribute to the charity of their choice during the annual campaign. Erin Richardson, center, chair of the 2022 Combined Federal Campaign at NASA’s Marshall Space Flight Center, holds Marshall’s award for raising more funds than any other large federal agency in the Greater Tennessee Valley Zone during the campaign. Standing with her, from left, are Marshall Associate Director, Technical, Larry Leopard and Marshall Associate Director Rae Ann Meyer. Marshall kicked off the 2022 campaign last October with a charity fair, giving potential donors a chance to learn about some of the charities that benefit from CFC donations. Erin Richardson, a materials science manager at Marshall who served as chair of the 2022 campaign, said the goal was more than just raising funds – it was about raising awareness of CFC and increasing participation in the campaign. “We ended up contributing the most out of any large agency in the Greater Tennessee Valley, which is our CFC zone,” Richardson said, adding the win came as a surprise given some of the obstacles they faced. Those obstacles included inflation and economic concerns among potential donors, balancing virtual and in-person campaigning after the pandemic, and it being the first time Richardson and many of her co-campaigners had served as CFC leaders at Marshall. Looking back on it now, she said, there were certainly some lessons learned. Richardson said she’s optimistic for the 2023 campaign, which will be chaired by Angela Lovelady, a lead budget analyst at Marshall. “Angela is a step above,” Richardson said. “She has an intense passion and heart for it, and I think she’ll be a great lead for CFC.” Marshall team members raised more funds than any other large federal agency in the Greater Tennessee Valley Zone during the 2022 Combined Federal Campaign. Overseen by the Office of Personnel Management, CFC is the official workplace giving campaign for federal employees, contractors, and retirees. NASA Marshall team members who wish to match that enthusiasm will have plenty of ways to do so when the 2023 campaign kicks off Oct. 17. Donors can contribute financially via credit or debit card payment or PayPal, with some team members able to donate a portion of their paycheck during the campaign period. Donors can also contribute their time at a participating charity, with each volunteer hour counted toward the overall fundraising goal. All campaigns start after Sept. 1 and end before mid-January of the following year. Each donation must be designated for a specific participating charity. In the Greater Tennessee Valley Zone, there are 69 charities currently listed as active CFC participants, from community health clinics and animal rescues to veteran and social justice groups. By participating in CFC each year, Marshall can show its support to the people all over the world, including the millions of U.S. taxpayers who make NASA’s mission possible, Richardson said. “We benefit so much as federal employees from taxpayers,” she said. “Some people will never get the opportunity to come through Gate 9 or see a launch or understand what we do, but we wouldn’t be able to do the job we are doing without them.” Learn more about CFC and see the list of participating charities in your community by visiting https://cfcgiving.opm.gov. Barnett, a Media Fusion employee, supports the Marshall Office of Communications. View the full article
-
4 min read Agency Leadership Talks NASA 2040, Artemis, Budget at Marshall Town Hall By Jessica Barnett From funding to historic achievements to the future of NASA, there was no shortage of topics for discussion during the latest Marshall Town Hall. Marshall team members joined in person and online as Acting Marshall Center Director Joseph Pelfrey, NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Bob Cabana, and Deputy Associate Administrator Casey Swails shared their goals for Marshall and the agency’s future and answered questions from the audience in Activities Building 4316 on Sept. 18. NASA Administrator Bill Nelson, far left, talks to Marshall team members during a Town Hall on Sept. 18 in Activities Building 4316. Joining him on the event stage, from left, are Marshall Acting Center Director Joseph Pelfrey, NASA Deputy Administrator Pam Melroy, NASA Associate Administrator Robert Cabana, and NASA Deputy Associate Administrator Casey Swails.NASA/Charles Beason Pelfrey kicked off the town hall by welcoming agency leaders and showering praise on the Marshall team. “It’s exciting to see the accomplishments of what we’re doing as an agency and see so many parts of that have a Marshall fingerprint,” Pelfrey said. “It’s an honor to have our leadership team here to share some of the things going on within our agency and how Marshall fits into those plans.” Nelson followed Pelfrey’s speech with another round of praise, calling Marshall team members “wizards who make the impossible possible.” “We’re going back to the Moon to learn, to live, to create, to invent, in order for us to go to Mars and beyond, to discover those far, distant cosmic shores,” Nelson said. “And Marshall is very much a part of this.” That work is being supported in part by NASA 2040, a strategic agency initiative aimed at driving meaningful changes that will allow the agency to realize its long-term vision for what leaders want the agency to be in 2040. “Personally, I think it’s NASA’s role to do really hard things that only NASA can do,” Swails said. “When we talk about 2040 and we talk about our mission strategy, how we do make sure we have an operating model that best sets us up for a future that aligns to mission goals? How do we make sure we have an institution that frankly reflects how amazing and incredible our mission is?” Cabana, right, responds to a question during the Q&A portion of the Marshall Town Hall. NASA/Charles Beason Swails then presented the plan to achieving those goals which included a seven-part list of workstreams with associated teams and leaders focused on supporting the workforce, infrastructure, and technologies critical to keeping NASA a leader in science, aeronautics, and space exploration. In addition to her speech, Swails held meetings Sept. 22 to further discuss NASA 2040. Cabana stressed the importance of such meetings and listening sessions during his portion of the town hall, encouraging Marshall team members to seize the opportunity to attend and offer feedback. Agency leaders also shared how Marshall is key to not just the initiative’s success but the success of NASA’s mission. “It’s important that we articulate and emphasize the science, technology, and impact we have,” Melroy said. “I’m personally excited, as I see the incredible science you work on here with ISS, what new discoveries we’re going to get with Artemis.” Melroy and Cabana noted Marshall’s work on nuclear propulsion, with Artemis, and with the International Space Station. “You’re not making a difference for Marshall Space Flight Center, the state of Alabama, or even the United States,” Cabana said. “You’re making a difference for humanity.” A Marshall team member poses a question to agency leaders during the Q&A portion of the Town Hall. NASA/Charles Beason Cabana provided an update on the Artemis program, telling audience members that Artemis II is still on track for its launch next year and work is underway to prepare for Artemis III’s launch in 2025. He encouraged Marshall team members to be active participants and promote an inclusive environment as the agency continues toward 2040. “What we are doing is too critical not to give it our very best and have that environment,” he said. Also critical, however, is ensuring NASA has the budget for its goals. Nelson, a former U.S. senator, said he isn’t sure what those currently in Congress will decide, but he remains confident that NASA will be just fine. He said there’s talk of NASA receiving level funding, which has caused angst among some, but that NASA’s international reach has made it favorable on both sides of the political aisle. “At the end of the day, it’s going to be all right,” Nelson said. “There will be some bumps along the way on this budget; it is a sign of the times. I wish it were not that way, but I can tell you that NASA brings people together, and NASA unites, not just in domestic politics but around the world as well.”Barnett, a Media Fusion employee, supports the Marshall Office of Communications View the full article