Jump to content

Review Board: NASA-JPL Psyche Progress Outstanding, Launch on Track


NASA

Recommended Posts

  • Publishers

rssImage-a6f8d6fdc261628be91cf96fa9646272.jpeg

Steps taken by NASA, the agency’s Jet Propulsion Laboratory (JPL) in Southern California, and Caltech, to put the Psyche mission on track for an October 2023 launch have been outstanding, according to an independently appointed review board. NASA and JPL convened the board last summer after the Psyche mission team requested to delay the spacecraft’

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 Min Read Order Up: High School Students Compete to Launch Their Food into Space with NASA HUNCH Culinary Competition
      High School students in chef jackets line long black tables at NASA's Langley Research Center preparing savory breakfast dishes fit for astronauts onboard the International Space Station. Credits: NASA/Angelique Herring On Monday, Feb. 26, visitors to the Integrated Engineering Services Building at NASA’s Langley Research Center in Hampton, Virginia, were greeted by the mouthwatering smell of roasted garlic, sautéed peppers and onions, fragrant herbs, and the unexpected discovery that the building’s main hallway had been turned into a pop-up kitchen for local high school students.
      These students were participants in NASA HUNCH Culinary. NASA HUNCH (High School Students United with NASA to Create Hardware) is a Project Based Learning program where high school students participate in the design and fabrication of real world valued products for NASA. HUNCH has six areas of focus that students may choose to participate in: Precision Machining, Softgoods, Design and Prototype, Food Science, Communications, and Software.
      High School students chop vegetables as they prepare their savory entry for NASA’s HUNCH Culinary Challenge.NASA/Angelique Herring The HUNCH Astronaut Culinary Program provides students the opportunity to create dishes for astronauts aboard the International Space Station. Students must create tasty recipes following a specific food processing procedure and meeting certain nutritional requirements. These dishes must meet the standards of the NASA Johnson Space Center Food Lab in Houston, Texas.
      Through this program, students gain culinary experience as well as experience with research and presenting their work in a professional environment. Students spend weeks perfecting their recipes so that on competition day, they can recreate their dishes in person at various NASA centers across the country.
      This year, HUNCH Culinary student teams were tasked with the challenge of creating a savory breakfast dish that included a vegetable. The recipes had to fall between 150 and 350 calories, contain less than 12 grams of fat and 250 milligrams of sodium, have at least one gram of fiber, and “must process well for spaceflight and for use in microgravity” among several other requirements.
      An eager hand reaches for a small serving of eggs scrambled with vegetables and topped with seeds as a larger skillet of the savory breakfast dish sits to the left.NASA/Angelique Herring Several students described challenges around creating a recipe under these guidelines. Nyland Clay, a student at Landstown High School in Virginia Beach, explained his team’s problem solving around the minimal sodium guideline.
      “We were able to work around that by using different types of flavors in order to substitute for the extra sodium,” he said. “One of the ways we did this was with poblano peppers. When seared over a grill, they make a nice smoky flavor that doesn’t add any sodium whatsoever.”
      Nyland’s team additionally chose to use ground turkey in their sweet potato hash recipe instead of ground beef to avoid unnecessary fat.
      Travis Walker, culinary instructor at Phoebus High School in Hampton and former executive catering chef manager for the NASA Langley Exchange, spoke highly of his students as his reason for teaching.
      “The most rewarding part is just watching the growth of the kids,” he said. “From the day you get them and they can’t boil water, to the time they get here and they’re in these competitions and excelling — that’s the most rewarding part.”
      The student groups with the highest scores will be invited to Johnson Space Center in Houston for a final competition where their dishes will be judged by Johnson Food Lab personnel, industry professionals, the ISS program office, and astronauts. The criteria are quality, taste, and the students’ work on the research paper and presentation video. The winning entree will be processed by the Johnson Space Center Food Lab and sent up to the station for the astronauts to enjoy.
      Share
      Details
      Last Updated Mar 26, 2024 Related Terms
      Langley Research Center Explore More
      3 min read University Teams Selected as Finalists to Envision New Aviation Responses to Natural Disasters 
      Article 34 mins ago 5 min read NASA Helps Emerging Space Companies ‘Take the Heat’
      Article 3 weeks ago 4 min read Langley Celebrates Black History Month: Clayton Turner
      Article 4 weeks ago View the full article
    • By NASA
      5 min read
      NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse
      NASA will launch three sounding rockets during the total solar eclipse on April 8, 2024, to study how Earth’s upper atmosphere is affected when sunlight momentarily dims over a portion of the planet.
      The Atmospheric Perturbations around Eclipse Path (APEP) sounding rockets will launch from NASA’s Wallops Flight Facility in Virginia to study the disturbances in the ionosphere created when the Moon eclipses the Sun. The sounding rockets had been previously launched and successfully recovered from White Sands Test Facility in New Mexico, during the October 2023 annular solar eclipse. They have been refurbished with new instrumentation and will be relaunched in April 2024. The mission is led by Aroh Barjatya, a professor of engineering physics at Embry-Riddle Aeronautical University in Florida, where he directs the Space and Atmospheric Instrumentation Lab.
      This photo shows the three APEP sounding rockets and the support team after successful assembly. The team lead, Aroh Barjatya, is at the top center, standing next to the guardrails on the second floor. NASA/Berit Bland The sounding rockets will launch at three different times: 45 minutes before, during, and 45 minutes after the peak local eclipse. These intervals are important to collect data on how the Sun’s sudden disappearance affects the ionosphere, creating disturbances that have the potential to interfere with our communications.
      This conceptual animation is an example of what observers might expect to see during a total solar eclipse, like the one happening over the United States on April 8, 2024. NASA’s Scientific Visualization Studio. The ionosphere is a region of Earth’s atmosphere that is between 55 to 310 miles (90 to 500 kilometers) above the ground. “It’s an electrified region that reflects and refracts radio signals, and also impacts satellite communications as the signals pass through,” said Barjatya. “Understanding the ionosphere and developing models to help us predict disturbances is crucial to making sure our increasingly communication-dependent world operates smoothly.”
      The ionosphere forms the boundary between Earth’s lower atmosphere – where we live and breathe – and the vacuum of space. It is made up of a sea of particles that become ionized, or electrically charged, from the Sun’s energy, or solar radiation. When night falls, the ionosphere thins out as previously ionized particles relax and recombine back into neutral particles. However, Earth’s terrestrial weather and space weather can impact these particles, making it a dynamic region and difficult to know what the ionosphere will be like at a given time. 
      An animation depicts changes in the ionosphere over a 24-hour period. The red and yellow swaths represent high-density ionized particles during the day. The purple dots represent neutral, relaxed particles at night. NASA/Krystofer Kim It’s often difficult to study short-term changes in the ionosphere during an eclipse with satellites because they may not be at the right place or time to cross the eclipse path. Since the exact date and times of the total solar eclipse are known, NASA can launch targeted sounding rockets to study the effects of the eclipse at the right time and at all altitudes of the ionosphere.
      As the eclipse shadow races through the atmosphere, it creates a rapid, localized sunset that triggers large-scale atmospheric waves and small-scale disturbances, or perturbations. These perturbations affect different radio communication frequencies. Gathering the data on these perturbations will help scientists validate and improve current models that help predict potential disturbances to our communications, especially high frequency communication. 
      The animation depicts the waves created by ionized particles during the 2017 total solar eclipse. MIT Haystack Observatory/Shun-rong Zhang. Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W. & Vierinen, J. (2017). Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophysical Research Letters, 44(24), 12,067-12,073. https://doi.org/10.1002/2017GL076054. The APEP rockets are expected to reach a maximum altitude of 260 miles (420 kilometers). Each rocket will measure charged and neutral particle density and surrounding electric and magnetic fields. “Each rocket will eject four secondary instruments the size of a two-liter soda bottle that also measure the same data points, so it’s similar to results from fifteen rockets, while only launching three,” explained Barjatya. Three secondary instruments on each rocket were built by Embry-Riddle, and the fourth one was built at Dartmouth College in New Hampshire.
      In addition to the rockets, several teams across the U.S. will also be taking measurements of the ionosphere by various means. A team of students from Embry-Riddle will deploy a series of high-altitude balloons. Co-investigators from the Massachusetts Institute of Technology’s Haystack Observatory in Massachusetts, and the Air Force Research Laboratory in New Mexico, will operate a variety of ground-based radars taking measurements. Using this data, a team of scientists from Embry-Riddle and Johns Hopkins University Applied Physics Laboratory are refining existing models. Together, these various investigations will help provide the puzzle pieces needed to see the bigger picture of ionospheric dynamics.
      A sounding rocket is able to carry science instruments between 30 and 300 miles above Earth’s surface. These altitudes are typically too high for science balloons and too low for satellites to access safely, making sounding rockets the only platforms that can carry out direct measurements in these regions. NASA’s Goddard Space Flight Center When the APEP sounding rockets launched during the 2023 annular solar eclipse, scientists saw a sharp reduction in the density of charged particles as the annular eclipse shadow passed over the atmosphere. “We saw the perturbations capable of affecting radio communications in the second and third rockets, but not during the first rocket that was before peak local eclipse” said Barjatya. “We are super excited to relaunch them during the total eclipse, to see if the perturbations start at the same altitude and if their magnitude and scale remain the same.”
      The next total solar eclipse over the contiguous U.S. is not until 2044, so these experiments are a rare opportunity for scientists to collect crucial data.
      The APEP launches will be live streamed via NASA’s Wallops’ official YouTube page and featured in NASA’s official broadcast of the total solar eclipse. The public can also watch the launches in person from 1-4 p.m. at the NASA Wallops Flight Facility Visitor Center.
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 25, 2024 Related Terms
      2024 Solar Eclipse Eclipses Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Ionosphere Science & Research Science Mission Directorate Skywatching Solar Eclipses Sounding Rockets Program Wallops Flight Facility Explore More
      3 min read Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow


      Article


      6 hours ago
      3 min read International Space Station welcomes biological and physical science experiments


      Article


      3 days ago
      2 min read Hubble Spots the Spider Galaxy


      Article


      3 days ago
      Keep Exploring Discover Related Topics
      2024 Total Eclipse



      Safety



      2024 Total Solar Eclipse Broadcast



      Eclipse 2024 Science


      View the full article
    • By NASA
      NASA, Health and Human Services Highlight Cancer Moonshot Progress
    • By Amazing Space
      LIVE SOYUZ CREW LAUNCH
    • By NASA
      NASA Astronaut Tracy Dyson Launch to the Space Station
  • Check out these Videos

×
×
  • Create New...