Jump to content

DOD assessing document disclosures and implementing mitigation measures


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This view of Jupiter’s icy moon Europa was captured by the JunoCam imager aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022.Image data: NASA/JPL-Caltech/SwRI/MSSS
      Image processing: Kevin M. Gill CC BY 3.0  The ice-covered Jovian moon generates 1,000 tons of oxygen every 24 hours – enough to keep a million humans breathing for a day.
      Scientists with NASA’s Juno mission to Jupiter have calculated the rate of oxygen being produced at the Jovian moon Europa to be substantially less than most previous studies. Published on March 4 in Nature Astronomy, the findings were derived by measuring hydrogen outgassing from the icy moon’s surface using data collected by the spacecraft’s Jovian Auroral Distributions Experiment (JADE) instrument.
      The paper’s authors estimate the amount of oxygen produced to be around 26 pounds every second (12 kilograms per second). Previous estimates range from a few pounds to over 2,000 pounds per second (over 1,000 kilograms per second). Scientists believe that some of the oxygen produced in this manner could work its way into the moon’s subsurface ocean as a possible source of metabolic energy.
      With an equatorial diameter of 1,940 miles (3,100 kilometers), Europa is the fourth largest of Jupiter’s 95 known moons and the smallest of the four Galilean satellites. Scientists believe a vast internal ocean of salty water lurks beneath its icy crust, and they are curious about the potential for life-supporting conditions to exist below the surface.
      This illustration shows charged particles from Jupiter impacting Europa’s surface, splitting frozen water molecules into oxygen and hydrogen molecules. Scientists believe some of these newly created oxygen gases could migrate toward the moon’s subsurface ocean, as depicted in the inset image.NASA/JPL-Caltech/SWRI/PU It is not just the water that has astrobiologists’ attention: The Jovian moon’s location plays an important role in biological possibilities as well. Europa’s orbit places it right in the middle of the gas giant’s radiation belts. Charged, or ionized, particles from Jupiter bombard the icy surface, splitting water molecules in two to generate oxygen that might find its way into the moon’s ocean.
      Click here for an interactive 3D visualization of Europa “Europa is like an ice ball slowly losing its water in a flowing stream. Except, in this case, the stream is a fluid of ionized particles swept around Jupiter by its extraordinary magnetic field,” said JADE scientist Jamey Szalay from Princeton University in New Jersey. “When these ionized particles impact Europa, they break up the water-ice molecule by molecule on the surface to produce hydrogen and oxygen. In a way, the entire ice shell is being continuously eroded by waves of charged particles washing up upon it.”
      Capturing the Bombardment
      As Juno flew within 220 miles (354 kilometers) of Europa at 2:36 p.m. PDT Sept. 29, 2022, JADE identified and measured hydrogen and oxygen ions that had been created by the bombarding charged particles and then “picked up” by Jupiter’s magnetic field as it swept past the moon.
      “Back when NASA’S Galileo mission flew by Europa, it opened our eyes to the complex and dynamic interaction Europa has with its environment. Juno brought a new capability to directly measure the composition of charged particles shed from Europa’s atmosphere, and we couldn’t wait to further peek behind the curtain of this exciting water world,” said Szalay. “But what we didn’t realize is that Juno’s observations would give us such a tight constraint on the amount of oxygen produced in Europa’s icy surface.”
      Juno carries 11 state-of-the-art science instruments designed to study the Jovian system, including nine charged-particle and electromagnetic-wave sensors for studying Jupiter’s magnetosphere.
      “Our ability to fly close to the Galilean satellites during our extended mission allowed us to start tackling a breadth of science, including some unique opportunities to contribute to the investigation of Europa’s habitability,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “And we’re not done yet. More moon flybys and the first exploration of Jupiter’s close ring and polar atmosphere are yet to come.”
      Oxygen production is one of many facets that NASA’s Europa Clipper mission will investigate when it arrives at Jupiter in 2030. The mission has a sophisticated payload of nine science instruments to determine if Europa has conditions that could be suitable for life.
      Now Bolton and the rest of the Juno mission team are setting their sights on another Jovian world, the volcano-festooned moon Io. On April 9, the spacecraft will come within about 10,250 miles (16,500 kilometers) of its surface. The data Juno gathers will add to findings from past Io flybys, including two extremely close approaches of about 932 miles (1,500 kilometers) on Dec. 30, 2023, and Feb. 3, 2024.
      More About the Mission
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
      More information about Juno is available at:
      https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2024-020
      Share
      Details
      Last Updated Mar 04, 2024 Related Terms
      Juno Europa Jupiter Jupiter Moons Explore More
      4 min read Spot the King of Planets: Observe Jupiter
      Jupiter is easy to observe, and well-documented by astronomers. Learn more about the King of…
      Article 3 weeks ago 2 min read For Your Processing Pleasure: The Sharpest Pictures of Jupiter’s Volcanic Moon Io in a Generation
      NASA’s Juno spacecraft just made the closest flybys of Jupiter’s moon Io that any spacecraft has carried…
      Article 4 weeks ago 6 min read Poised for Science: NASA’s Europa Clipper Instruments Are All Aboard
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance puts its robotic arm to work around a rocky outcrop called “Skinner Ridge” in a set of images captured in June and July 2022 by the rover’s Mastcam-Z camera system. SHERLOC is mounted on the end of the arm.NASA/JPL-Caltech/ASU/MSSS Engineers are working to stabilize a dust cover on one of the science instrument’s cameras.
      Data and imagery from NASA’s Perseverance Mars rover indicate one of two covers that keep dust from accumulating on the optics of the SHERLOC instrument remains partially open. In this position, the cover interferes with science data collection operations. Mounted on the rover’s robotic arm, SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals) uses cameras, a spectrometer, and a laser to search for organic compounds and minerals that have been altered in watery environments and may be signs of past microbial life.
      The mission determined on Jan. 6 that the cover was oriented in such a position that some of its operation modes could not successfully operate. An engineering team has been investigating to determine the root cause and possible solutions. Recently, the cover partially opened. To better understand the behavior of the cover’s motor, the team has been sending commands to the instrument that alter the amount of power being fed to it.
      With the cover in its current position, the instrument cannot use its laser on rock targets, and cannot collect spectroscopy data. However, imaging microscopy can still be acquired with WATSON, a color camera on SHERLOC used for taking close-up images of rock grains and surface textures. WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) operates through a different aperture.
      SHERLOC is part of a seven-instrument suite on Perseverance. During development of the mission, the team designed the instrument suite such that the rover could still achieve its science objectives should any single instrument fail, as there is some overlap among the capabilities of the instruments. Along with SHERLOC, PIXL (Planetary Instrument for X-ray Lithochemistry) and SuperCam also perform spectroscopy.
      Currently making its way to explore an area nicknamed “Beehive Geyser,” the rover marked its 1,000th Martian day, or sol, on the Red Planet on Dec. 12, 2023 – more than 300 sols beyond its initial prime mission. Since the rover’s landing Feb. 18, 2021, SHERLOC has scanned and provided rich data on 34 rock targets, creating a total of 261 hyperspectral maps of those targets. Featuring a radioisotope power system, Perseverance’s design is based on the agency’s Curiosity Mars rover, which is still going strong after more than 11 years (4,000 sols) on the Red Planet.
      More About the Mission
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith.
      Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      mars.nasa.gov/mars2020/
      News Media Contacts
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      2024-015
      Share
      Details
      Last Updated Feb 13, 2024 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars 2020 Explore More
      7 min read JPL Workforce Update
      Article 7 days ago 2 min read University High School Wins Regional Science Bowl at NASA’s JPL
      Article 1 week ago 6 min read NASA Puts Next-Gen Exoplanet-Imaging Technology to the Test
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      This content is password protected. To view it please enter your password below:
      Password:
      View the full article
    • By NASA
      A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.NASA NASA is collaborating with the U.S. Air Force and U.S. Space Force to offer a set of hands-on learning engagements that will help higher education institutions, faculty, and students learn more about what it takes to build small satellites and be selected for flight opportunities. 
      Teams selected for the University Nanosatellite Program Mission Concepts 2024 Summer Series will receive systems engineering training that prepares them for the industrial workforce while developing small satellite expertise at U.S. universities. The program, which runs from May through August 2024, also enhances students’ potential to be selected for flights to space as part of NASA’s CSLI (CubeSat Launch Initiative) and the U.S. Air Force University Nanosatellite Program in 2024. 
      The program allows faculty and students to form teams without draining university resources, and includes travel funding for kickoff, final event, and any in-person reviews, among other benefits. 
      All U.S colleges and universities are eligible, and teams at minority-serving institutions and historically Black colleges and universities are strongly encouraged to apply for the Mission Concepts 2024 Summer Series in accordance with the criteria in the request for proposal. The solicitation will be available on Tuesday, Jan. 16, with a deadline to apply on Friday, Feb. 9. 
      NASA’s CSLI and the agency’s Kennedy Space Center in Florida university partnerships and small satellite capabilities manager conduct the program for NASA. The agency’s collaboration with the U.S Air Force and U.S. Space Force helps broaden access to space and strengthen the capabilities and knowledge of higher education institutions, faculty, and students. 
      To attend an upcoming virtual question and answer session about Mission Concepts 2024, please email laura.aguiar@nasa.gov.
      For more information, visit:  https://universitynanosat.org/solicitation/
      View the full article
    • By NASA
      3 min read
      NASA’s Hubble Measures the Size of the Nearest Transiting Earth-Sized Planet
      This is an artist’s concept of the nearby exoplanet LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star. The star is in a triple system, with two closely orbiting red dwarfs seen at upper right. The black dot in front of the bright light-red sphere at image center is planet LTT 1445Ac transiting the face of the star. The planet has a surface temperature of roughly 500 degrees Fahrenheit. In the foreground at lower left is another planet in the system, LTT 1445Ab. The view is from 22 light-years away, looking back toward our Sun, which is the bright dot at lower right. Some of the background stars are part of the constellation Boötes. NASA, ESA, Leah Hustak (STScI) NASA’s Hubble Space Telescope has measured the size of the nearest Earth-sized exoplanet that passes across the face of a neighboring star. This alignment, called a transit, opens the door to follow-on studies to see what kind of atmosphere, if any, the rocky world might have.
      The diminutive planet, LTT 1445Ac, was first discovered by NASA’s Transiting Exoplanet Survey Satellite (TESS) in 2022. But the geometry of the planet’s orbital plane relative to its star as seen from Earth was uncertain because TESS does not have the required optical resolution. This means the detection could have been a so-called grazing transit, where a planet only skims across a small portion of the parent star’s disk. This would yield an inaccurate lower limit of the planet’s diameter.
      “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said Emily Pass of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts. 
      Hubble observations show that the planet makes a normal transit fully across the star’s disk, yielding a true size of only 1.07 times Earth’s diameter. This means the planet is a rocky world, like Earth, with approximately the same surface gravity. But at a surface temperature of roughly 500 degrees Fahrenheit, it is too hot for life as we know it.
      The planet orbits the star LTT 1445A, which is part of a triple system of three red dwarf stars that is 22 light-years away in the constellation Eridanus. The star has two other reported planets that are larger than LTT 1445Ac. A tight pair of two other dwarf stars, LTT 1445B and C, lies about 3 billion miles away from LTT 1445A, also resolved by Hubble. The alignment of the three stars and the edge-on orbit of the BC pair suggests that everything in the system is co-planar, including the known planets.  
      “Transiting planets are exciting since we can characterize their atmospheres with spectroscopy, not only with Hubble but also with the James Webb Space Telescope. Our measurement is important because it tells us that this is likely a very nearby terrestrial planet. We are looking forward to follow-on observations that will allow us to better understand the diversity of planets around other stars,” said Pass.
      This research has been accepted for publication in The Astronomical Journal.
      The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, Maryland
      Science Contact:
      Emily Pass
      Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts
      Share








      Details
      Last Updated Nov 16, 2023 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Earth-like Exoplanets Exoplanets Goddard Space Flight Center Hubble Space Telescope Missions Science & Research Science Mission Directorate Terrestrial Exoplanets TESS (Transiting Exoplanet Survey Satellite) The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope



      Exoplanets



      Stars Stories



      Our Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...