Jump to content

Views of the Moon - new views of the lunar surface every minute


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Three-Year Study of Young Stars with NASA’s Hubble Enters New Chapter
      In the largest and one of the most ambitious Hubble Space Telescope programs ever executed, a team of scientists and engineers collected information on almost 500 stars over a three-year period. This effort offers new insights into the stars’ formation, evolution, and impact on their surroundings. 
      This comprehensive survey, called ULLYSES (Ultraviolet Legacy Library of Young Stars as Essential Standards), was completed in December 2023, and provides a rich spectroscopic dataset obtained in ultraviolet light that astronomers will be mining for decades to come. Because ultraviolet light can only be observed from space, Hubble is the only active telescope that can accomplish this research. 
      The ULLYSES program studied two types of young stars: super-hot, massive, blue stars and cooler, redder, less massive stars than our Sun. The top panel is a Hubble Space Telescope image of a star-forming region containing massive, young, blue stars in 30 Doradus, the Tarantula Nebula. Located within the Large Magellanic Cloud, this is one of the regions observed by ULLYSES. The bottom panel shows an artist’s concept of a cooler, redder, young star that less massive than our Sun. This type of star is still gathering material from its surrounding, planet-forming disk. NASA, ESA, STScI, Francesco Paresce (INAF-IASF Bologna), Robert O’Connell (UVA), SOC-WFC3, ESO
      Download this image

      “I believe the ULLYSES project will be transformative, impacting overall astrophysics – from exoplanets, to the effects of massive stars on galaxy evolution, to understanding the earliest stages of the evolving universe,” said Julia Roman-Duval, Implementation Team Lead for ULLYSES at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “Aside from the specific goals of the program, the stellar data can also be used in fields of astrophysics in ways we can’t yet imagine.”
      The ULLYSES team studied 220 stars, then combined those observations with information from the Hubble archive on 275 additional stars. The program also included data from some of the world’s largest, most powerful ground-based telescopes and X-ray space telescopes. The ULLYSES dataset is made up of stellar spectra, which carry information about each star’s temperature, chemical composition, and rotation. 
      One type of stars studied under ULLYSES is super-hot, massive, blue stars. They are a million times brighter than the Sun and glow fiercely in ultraviolet light that can easily be detected by Hubble. Their spectra include key diagnostics of the speed of their powerful winds. The winds drive galaxy evolution and seed galaxies with the elements needed for life. Those elements are cooked up inside the stars’ nuclear fusion ovens and then injected into space as a star dies. ULLYSES targeted blue stars in nearby galaxies that are deficient in elements heavier than helium and hydrogen. This type of galaxy was common in the very early universe. “ULLYSES observations are a stepping stone to understanding those first stars and their winds in the universe, and how they impact the evolution of their young host galaxy,” said Roman-Duval.  
      The other star category in the ULLYSES program is young stars less massive than our Sun. Though cooler and redder than our Sun, in their formative years they unleash a torrent of high-energy radiation, including blasts of ultraviolet light and X-rays. Because they are still growing, they are gathering material from their surrounding planet-forming disks of dust and gas. The Hubble spectra include key diagnostics of the process by which they acquire their mass, including how much energy this process releases into the surrounding planet-forming disk and nearby environment. The blistering ultraviolet light from young stars affects the evolution of these disks as they form planets, as well as the chances of habitability for newborn planets. The target stars are located in nearby star-forming regions in our Milky Way galaxy.
      The ULLYSES concept was designed by a committee of experts with the goal of using Hubble to provide a legacy set of stellar observations. “ULLYSES was originally conceived as an observing program utilizing Hubble’s sensitive spectrographs. However, the program was tremendously enhanced by community-led coordinated and ancillary observations with other ground- and space-based observatories,” said Roman-Duval. “Such broad coverage allows astronomers to investigate the lives of stars in unprecedented detail and paint a more comprehensive picture of the properties of these stars and how they impact their environment.”
      To that end, STScI hosted a ULLYSES workshop March 11–14 to celebrate the beginning of a new era of research on young stars. The goal was to allow members of the astronomical community to collaborate on the data, so that they could gain momentum in the ongoing analyses, or kickstart new ideas for analysis. The workshop was one important step in exploiting this legacy spectral library to its fullest potential, fulfilling the promise of ULLYSES.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ann Jenkins / Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Julia Roman-Duval
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Mar 28, 2024 Editor Andrea Gianopoulos Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Stars Stories



      Galaxies Stories



      Universe


      View the full article
    • By Space Force
      U.S. Space Force Lt. Col. Deane L. Lake assumed command of U.S. Space Forces Central Combat Detachment 3-1 during an activation and assumption of command ceremony at an undisclosed location within the U.S. Central Command area of responsibility, March 12, 2024.

      View the full article
    • By NASA
      4 min read
      Contribute to NASA Research on Eclipse Day – and Every Day
      NASA is celebrating the Sun during the Heliophysics Big Year, which extends through the end of 2024. You can get involved to help us learn more about our star and its influence on our planet. With exciting experiments happening during the total solar eclipse that will cross North America on April 8, to widespread investigations going on throughout the year, keep reading to find a project that’s right for you.
      The dark band that runs from Mexico into Texas and all the way to Maine and Maritime Canada shows the path of totality for the April 8, 2024, eclipse. This is the area where people on Earth can witness a total eclipse of the Sun. Outside of this path, observers may see a partial eclipse, with the amount of the Sun being blocked by the Moon decreasing with distance from the path.  NASA/Scientific Visualization Studio/Michala Garrison; Eclipse Calculations By Ernie Wright, NASA Goddard Space Flight Center What Is Citizen Science (Also Called Participatory Science)?
      NASA defines citizen science as “a form of open collaboration in which individuals or organizations participate in the scientific process in various ways” from collecting and analyzing data to making discoveries and solving problems. ”Citizen” here refers to citizens of planet Earth, and these projects are open to everyone, regardless of country of birth or legal citizenship status.
      NASA sponsors citizen science projects across all five areas of research that it pursues: Earth science, planetary science, astrophysics, biological and physical sciences, and heliophysics. And yes, there are a few projects that are focused on the April 8 solar eclipse!
      What You Can Do
      Depending which project you join, you might:
      Observe and record in pictures or words natural phenomena like clouds, animal noises, or a solar eclipse. Learn how to recognize or classify patterns in data or pictures of a comet or solar jet. Learn how to build and use scientific equipment like radio telescopes or ham radios. Your contribution may be a large or small piece of the picture, but what you do as part of a NASA citizen science project is essential to answering the research question or need that the project addresses. And while you’re contributing to science, you might also develop new skills and make friends. You can read about some project participants – and what motivates them – in these profiles.
      The Projects
      NASA citizen science projects related to the April 8, 2024, eclipse and solar science are presented in four groups below. You can see all NASA citizen science projects on this website.
      Use the tables below to find the project for you! A few notes:
      “Minimum time required” refers to how much time it would take you to get up to speed from the start. “Where” refers to where you need to be in order to participate. Are you an educator looking for ways to involve your formal or informal students in eclipse-related science? Check out this companion blog post for some tips for educators.
      Eclipse Projects That Need You on April 8!
      Quick-Start Projects That Require No Special Equipment
      Prerequisite knowledge Preparation/ Training Required equipment Challenge level Minimum time required Where Eclipse Soundscapes (Observer role) none online, minutes printable form easy minutes outside, in or near the path of totality GLOBE Observer: Eclipse Protocol none in app, minutes smartphone, air temperature thermometer easy minutes outside, in or near the path of totality SunSketcher none in app, minutes smartphone (download app in advance) easy minutes outside, in path of totality More Demanding Projects That Require Special Equipment
      Prerequisite knowledge Preparation/ Training Required equipment Challenge level Minimum time required Where Eclipse Soundscapes (Data Collector role) none online, minutes AudioMoth with micro-SD cards easy hours outside, in or near the path of totality Eclipse Megamovie 2024 how to use DSLR camera online, minutes DSLR camera and tracking mount moderate hours outside, in path of totality HamSCI familiarity with ham radios online, self-directed, hours web-connected device and/or ham radio moderate days inside Radio JOVE none online, self-directed, days to weeks web-connected device and/or radio telescope moderate weeks outside and/or online Citizen Continental-America Telescope Eclipse (CATE) 2024 none in person, days telescope, computer, cameras – provided to selected teams high (application period closed) days outside, in path of totality Dynamic Eclipse Broadcast (DEB) Initiative none online, hours telescope – provided to selected teams high (application period closed) days outside, in and off the path of totality Heliophysics Projects That You Can Do Anytime
      Quick-Start Projects, No Special Equipment Required
      Prerequisite knowledge Preparation/ Training Required equipment Challenge level Minimum time required Where HARP – Heliophysics Audified: Resonance in Plasmas none online, minutes web-connected device easy minutes online Solar Jet Hunter none online, minutes web-connected device easy minutes online More Demanding Projects That Require Special Equipment
      Prerequisite knowledge Preparation/ Training Required equipment Challenge level Minimum time required Where Aurorasaurus none online, minutes web-connected device, camera optional moderate hours outside, high latitudes Dynamic Eclipse Broadcast (DEB) Initiative none online, hours telescope – provided to selected teams moderate hours outside HamSCI familiarity with ham radios online, self-directed, hours web-connected device and/or ham radio moderate weeks indoors Radio JOVE familiarity with radio telescopes online, self-directed, hours web-connected device and/or radio telescope moderate weeks outside and/or online Spritacular none online, minutes web-connected device and/or camera moderate minutes outside and/or online Sungrazer Project none online, hours web-connected device high hours online Advanced Participation
      Many NASA citizen science projects start out with a straightforward, structured task, but that doesn’t have to be where your contributions end. Some projects offer webinars or host regular video conference calls where enthusiastic volunteers can learn about and participate in the work that comes after data collection or classification. Hundreds of volunteers have become involved in deep ways. Over 450 volunteers have even been recognized for their contributions by being named as co-authors of scientific papers, which are the formal way in which scientists announce new discoveries and ideas.
      By Sarah Kirn
      Citizen Science Strategist, NASA, at the Gulf of Maine Research Institute
      Share








      Details
      Last Updated Mar 27, 2024 Related Terms
      2024 Solar Eclipse Citizen Science Eclipses Skywatching Solar Eclipses Explore More
      3 min read Eclipse Citizen Science for Educators


      Article


      12 mins ago
      4 min read ESA, NASA Solar Observatory Discovers Its 5,000th Comet


      Article


      5 hours ago
      5 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse


      Article


      2 days ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Artist’s concept of an Artemis astronaut deploying an instrument on the lunar surface.Credits: NASA NASA has chosen the first science instruments designed for astronauts to deploy on the surface of the Moon during Artemis III. Once installed near the lunar South Pole, the three instruments will collect valuable scientific data about the lunar environment, the lunar interior, and how to sustain a long-duration human presence on the Moon, which will help prepare NASA to send astronauts to Mars.
      “Artemis marks a bold new era of exploration, where human presence amplifies scientific discovery. With these innovative instruments stationed on the Moon’s surface, we’re embarking on a transformative journey that will kick-start the ability to conduct human-machine teaming – an entirely new way of doing science,” said NASA Deputy Administrator Pam Melroy. “These three deployed instruments were chosen to begin scientific investigations that will address key Moon to Mars science objectives.”
      The instruments will address three Artemis science objectives: understanding planetary processes, understanding the character and origin of lunar polar volatiles, and investigating and mitigating exploration risks. They were specifically chosen because of their unique installation requirements that necessitate deployment by humans during moonwalks. All three payloads were selected for further development to fly on Artemis III that’s targeted to launch in 2026, however, final manifesting decisions about the mission will be determined at a later date. Members of these payload teams will become members of NASA’s Artemis III science team.
      The Lunar Environment Monitoring Station (LEMS) is a compact, autonomous seismometer suite designed to carry out continuous, long-term monitoring of the seismic environment, namely ground motion from moonquakes, in the lunar south polar region. The instrument will characterize the regional structure of the Moon’s crust and mantle, which will add valuable information to lunar formation and evolution models. LEMS previously received four years of NASA’s Development and Advancement of Lunar Instrumentation funding for engineering development and risk reduction. It is intended to operate on the lunar surface from three months up to two years and may become a key station in a future global lunar geophysical network. LEMS is led by Dr. Mehdi Benna, from the University of Maryland, Baltimore County.
      Lunar Effects on Agricultural Flora (LEAF) will investigate the lunar surface environment’s effects on space crops. LEAF will be the first experiment to observe plant photosynthesis, growth, and systemic stress responses in space-radiation and partial gravity.  Plant growth and development data, along with environmental parameters measured by LEAF, will help scientists understand the use of plants grown on the Moon for both human nutrition and life support on the Moon and beyond. LEAF is led by Christine Escobar of Space Lab Technologies, LLC, in Boulder, Colorado.
      The Lunar Dielectric Analyzer (LDA) will measure the regolith’s ability to propagate an electric field, which is a key parameter in the search for lunar volatiles, especially ice. It will gather essential information about the structure of the Moon’s subsurface, monitor dielectric changes caused by the changing angle of the Sun as the Moon rotates, and look for possible frost formation or ice deposits. LDA, an internationally contributed payload, is led by Dr. Hideaki Miyamoto of the University of Tokyo and supported by JAXA (Japan Aerospace Exploration Agency).
      “These three scientific instruments will be our first opportunity since Apollo to leverage the unique capabilities of human explorers to conduct transformative lunar science,” said Joel Kearns, deputy associate administrator for exploration in NASA’s Science Mission Directorate in Washington. “These payloads mark our first steps toward implementing the recommendations for the high-priority science outlined in the Artemis III Science Definition Team report.”
      Artemis III, the first mission to return astronauts to the surface of the Moon in more than 50 years, will explore the south polar region of the Moon, within 6 degrees of latitude from the South Pole. Several proposed landing regions for the mission are located among some of the oldest parts of the Moon. Together with the permanently shadowed regions, they provide the opportunity to learn about the history of the Moon through previously unstudied lunar materials.
      With the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon, and establish long-term exploration for scientific discovery and preparation for human missions to Mars for the benefit of all.
      For more information on Artemis science, visit:
      https://science.nasa.gov/lunar-science
      -end-
      Karen Fox / Erin Morton
      Headquarters, Washington
      202-358-1257 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov  
      Share
      Details
      Last Updated Mar 26, 2024 LocationNASA Headquarters Related Terms
      Artemis Artemis 3 Earth's Moon Science & Research Technology View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Gateways to Blue Skies Competition is sponsored by NASA’s Aeronautics Research Mission Directorate and is managed by the National Institute of Aerospace.Image Credit: NASA Eight teams participating in the 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters Competition have been selected to present their design concepts to a panel of industry experts at the 2024 Blue Skies Forum, May 30 and 31, 2024 at NASA’s Ames Research Center in Mountain View, California.  
      Sponsored by NASA’s Aeronautics Research Mission Directorate (ARMD), this year’s Blue Skies Competition asked teams of university students to research and conceptualize aviation-related systems that will aid in natural disaster management, and to submit a five to seven-page proposal and a video summarizing their concept.  
      “We are thrilled with the diversity of ideas from all the finalists and can see their passion for making a real impact in natural disaster response through new and improved aviation systems,” said Steven Holz, NASA Aeronautics University Innovation Assistant Project Manager and Blue Skies judge and co-chair. “We look forward to seeing their final papers, infographics, and hearing their final presentations at the forum.” 
      The 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters finalist projects represent diverse natural disaster response types, including earthquakes, avalanches, volcanic eruptions, hurricanes, floods, and wildfires: 
      Boston University  
      Deployable Unmanned Aerial System to Detect and Map Volcanic Ash Clouds  
      Advisor: James Geiger  
      Boston University  
      Rapid Evaluation, Coordination, Observation, Verification & Environmental Reporting (RECOVER)  
      Advisor: Dr. Anthony Linn  
      Bowie State University  
      Enhancing Earthquake Disaster Relief with Artificial Intelligence and Machine Learning  
      Advisor: Dr. Haydar Teymourlouei  
      California State Polytechnic University, Pomona  
      Aero-Quake Emergency Response Network  
      Advisor: Mark Gonda  
      Cerritos College  
      F.I.R.E. (Fire Intervention Retardant Expeller)  
      Advisor: Janet McLarty-Schroeder  
      Columbia University  
      AVATARS: Aerial Vehicles for Avalanche Terrain Assessment and Reporting Systems  
      Faculty Advisor: Dr. Mike Massimino  
      North Carolina State University  
      Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (REACHR)  
      Advisor: Dr. Felix Ewere  
      University of Texas, Austin  
      Data Integrated UAV for Wildfire Management  
      Advisor: Dr. Christian Claudel  
      As climate change increasingly influences the frequency and severity of natural disasters on a global scale, opportunities to contribute at the intersection of technological advancement, aviation, and natural disasters grow in both number and importance. NASA Aeronautics is dedicated to expanding its efforts to assist commercial, industry, and government partners in advancing aviation-related systems that could help prepare for natural disasters, lessen their impacts, and speed up recovery efforts. 
      The eight finalist teams each receive $8,000 stipends to facilitate full participation in the Gateways to Blue Skies Forum, which will be held in May in Mountain View and will be livestreamed globally. Winning team members earn a chance to intern at one of NASA’s Aeronautics centers in the 2024-25 academic year. 
      The 2024 Gateways to Blue Skies competition is sponsored by NASA’s Aeronautics Research Mission Directorate’s (ARMD’s) University Innovation Project (UI) and is managed by the National Institute of Aerospace (NIA). 
      For more on the Gateways to Blues Skies: Advancing Aviation for Natural Disasters competition, visit https://blueskies.nianet.org. 
      Share
      Details
      Last Updated Mar 26, 2024 Related Terms
      Langley Research Center Aeronautics Explore More
      3 min read NASA Armstrong Updates 1960s Concept to Study Giant Planets
      Article 2 weeks ago 5 min read NASA Helps Emerging Space Companies ‘Take the Heat’
      Article 3 weeks ago 8 min read ARMD Solicitations
      Article 4 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...