Jump to content

Colorado, Indiana Students to Hear from NASA Astronaut in Space


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      College students attend the 2023 Mission Concept kickoff event at Kennedy Space Center in Florida in May 2023. At the event students work with officials from NASA and branches of the U.S. military to learn more about creating CubeSat mission launch proposals.NASA EDGE Eight university teams have been selected to work with NASA and the U.S. military to improve their small satellite proposals, ultimately increasing the possibility of flying their technology in space, and potentially launching their own careers in the space industry.
      NASA’s CSLI (CubeSat Launch Initiative) is partnering with the U.S. Air Force and U.S. Space Force for the 2024 Mission Concept Program. Running from May through August, the program will provide students with systems engineering training for spacecraft development. The partnership aims to prepare students to work in the space industry while simultaneously enhancing small satellite expertise among faculty at U.S. universities.
      A total of 34 universities applied for the 2024 session. A mix of NASA, Air Force, and contractor personnel reviewed the proposals, selecting universities based on the educational impact, university program impact and development, minority outreach and support, and relevance to NASA or the Department of Defense. Three of this year’s awardees – University of Central Florida, Florida Atlantic University, and Tarleton State University – are Minority Serving Institutions. This year’s selections are:
      University of Central Florida, Orlando University of Mississippi, Oxford Florida Atlantic University, Boca Raton University of North Dakota, Grand Forks Valparaiso University, Valparaiso, Indiana Northeastern University, Boston West Virginia University, Morgantown Tarleton State University, Stephenville, Texas The teams will meet at NASA’s Kennedy Space Center in Florida for a four-day kickoff meeting in May, followed by seven weeks at the Air Force’s University Nanosatellite Program facilities in Albuquerque, New Mexico, where three students will serve as interns with the Space Dynamics Laboratory.
      During the program, the students will work with small satellite experts for continuous feedback and guidance to help improve university proposals and increase those teams’ potential of being selected to fly to space as part of NASA’s CSLI or the Air Force’s nanosatellite opportunities.
      Final presentations will take place in Albuquerque and, although not required, participants are encouraged to attend the Small Satellite Conference in Logan, Utah, in August. Both programs will make final selections for future flights in 2025.
      The 2024 Mission Concept Program provides funding for all travel, including kickoff, final event, and in-person reviews, allowing faculty and students to formulate teams without straining university resources.
      NASA uses CSLI as one if its ways to attract retain students in science, technology, engineering, and mathematics disciplines. This strengthens NASA’s and the nation’s future workforce. The initiative promotes and develops innovative technology partnerships among NASA, U.S. industry, and other sectors for the benefit of all.
      Visit NASA’s CSLI website for more information:
      https://go.nasa.gov/3PEP2Q6
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA will host media to view a milestone RS-25 engine test at NASA’s Stennis Space Center on Wednesday, April 3, to certify full production of new engines to help power the SLS (Space Launch System) rocket on Artemis missions to the Moon and beyond.
      As NASA explores the universe for the benefit of all, NASA Stennis is testing engines and systems that will help launch the SLS rocket and Orion spacecraft on future deep space missions. The April 3 test will mark completion of a 12-test series to certify production of RS-25 engines by lead contractor Aerojet Rocketdyne, an L3Harris Technologies company, to help power missions beginning with Artemis V.

      In addition to the engine hot fire on the Fred Haise Test Stand, media will have an opportunity to tour the Aerojet Rocketdyne Engine Assembly Facility onsite, to receive a briefing at the Thad Cochran Test Stand (B-2) about upcoming exploration upper stage testing, and to interview NASA officials and others.

      The RS-25 hot fire viewing is targeted for early- to mid-afternoon.
      Following the hot fire, media also will have a chance to gather onsite to view and participate in the NASA news conference announcing the company, or companies, selected to move forward in development of the lunar terrain vehicle (LTV) that will help Artemis astronauts explore more of the Moon’s surface on future missions. The news conference will be broadcast at 3 p.m. CDT from NASA’s Johnson Space Center in Houston.
      Media members interested in attending should:
      Be a U.S. citizen. Contact Lacy Thompson at calvin.l.thompson@nasa.gov no later than 12 p.m. on Monday, April 1. Provide name as it appears on driver’s license. Identify state issuing the license. Provide a mobile contact number. Please note NASA’s media accreditation policy online.
      Media members must arrive from 9 a.m. to 9:30 a.m. on Wednesday, April 3, at INFINITY Science Center, the official visitors center for NASA Stennis, and produce valid driver’s license for transport on site. INFINITY is located at 1 Discovery Circle in Pearlington, Mississippi. Long pants and closed-toe shoes are required attire.
      Facebook logo @NASASTENNIS @NASASTENNIS Instagram logo @NASASTENNIS Share
      Details
      Last Updated Mar 28, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      6 min read Lagniappe for March 2024
      Article 3 weeks ago 3 min read NASA to Continue Testing for New Artemis Moon Rocket Engines
      Article 1 month ago 5 min read Lagniappe for February 2024
      Article 2 months ago Keep Exploring Discover More Topics from NASA Stennis
      Doing Business with NASA Stennis
      About NASA Stennis
      Visit NASA Stennis
      NASA Stennis Media Resources
      View the full article
    • By NASA
      4 min read
      Three-Year Study of Young Stars with NASA’s Hubble Enters New Chapter
      In the largest and one of the most ambitious Hubble Space Telescope programs ever executed, a team of scientists and engineers collected information on almost 500 stars over a three-year period. This effort offers new insights into the stars’ formation, evolution, and impact on their surroundings. 
      This comprehensive survey, called ULLYSES (Ultraviolet Legacy Library of Young Stars as Essential Standards), was completed in December 2023, and provides a rich spectroscopic dataset obtained in ultraviolet light that astronomers will be mining for decades to come. Because ultraviolet light can only be observed from space, Hubble is the only active telescope that can accomplish this research. 
      The ULLYSES program studied two types of young stars: super-hot, massive, blue stars and cooler, redder, less massive stars than our Sun. The top panel is a Hubble Space Telescope image of a star-forming region containing massive, young, blue stars in 30 Doradus, the Tarantula Nebula. Located within the Large Magellanic Cloud, this is one of the regions observed by ULLYSES. The bottom panel shows an artist’s concept of a cooler, redder, young star that less massive than our Sun. This type of star is still gathering material from its surrounding, planet-forming disk. NASA, ESA, STScI, Francesco Paresce (INAF-IASF Bologna), Robert O’Connell (UVA), SOC-WFC3, ESO
      Download this image

      “I believe the ULLYSES project will be transformative, impacting overall astrophysics – from exoplanets, to the effects of massive stars on galaxy evolution, to understanding the earliest stages of the evolving universe,” said Julia Roman-Duval, Implementation Team Lead for ULLYSES at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “Aside from the specific goals of the program, the stellar data can also be used in fields of astrophysics in ways we can’t yet imagine.”
      The ULLYSES team studied 220 stars, then combined those observations with information from the Hubble archive on 275 additional stars. The program also included data from some of the world’s largest, most powerful ground-based telescopes and X-ray space telescopes. The ULLYSES dataset is made up of stellar spectra, which carry information about each star’s temperature, chemical composition, and rotation. 
      One type of stars studied under ULLYSES is super-hot, massive, blue stars. They are a million times brighter than the Sun and glow fiercely in ultraviolet light that can easily be detected by Hubble. Their spectra include key diagnostics of the speed of their powerful winds. The winds drive galaxy evolution and seed galaxies with the elements needed for life. Those elements are cooked up inside the stars’ nuclear fusion ovens and then injected into space as a star dies. ULLYSES targeted blue stars in nearby galaxies that are deficient in elements heavier than helium and hydrogen. This type of galaxy was common in the very early universe. “ULLYSES observations are a stepping stone to understanding those first stars and their winds in the universe, and how they impact the evolution of their young host galaxy,” said Roman-Duval.  
      The other star category in the ULLYSES program is young stars less massive than our Sun. Though cooler and redder than our Sun, in their formative years they unleash a torrent of high-energy radiation, including blasts of ultraviolet light and X-rays. Because they are still growing, they are gathering material from their surrounding planet-forming disks of dust and gas. The Hubble spectra include key diagnostics of the process by which they acquire their mass, including how much energy this process releases into the surrounding planet-forming disk and nearby environment. The blistering ultraviolet light from young stars affects the evolution of these disks as they form planets, as well as the chances of habitability for newborn planets. The target stars are located in nearby star-forming regions in our Milky Way galaxy.
      The ULLYSES concept was designed by a committee of experts with the goal of using Hubble to provide a legacy set of stellar observations. “ULLYSES was originally conceived as an observing program utilizing Hubble’s sensitive spectrographs. However, the program was tremendously enhanced by community-led coordinated and ancillary observations with other ground- and space-based observatories,” said Roman-Duval. “Such broad coverage allows astronomers to investigate the lives of stars in unprecedented detail and paint a more comprehensive picture of the properties of these stars and how they impact their environment.”
      To that end, STScI hosted a ULLYSES workshop March 11–14 to celebrate the beginning of a new era of research on young stars. The goal was to allow members of the astronomical community to collaborate on the data, so that they could gain momentum in the ongoing analyses, or kickstart new ideas for analysis. The workshop was one important step in exploiting this legacy spectral library to its fullest potential, fulfilling the promise of ULLYSES.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ann Jenkins / Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Julia Roman-Duval
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Mar 28, 2024 Editor Andrea Gianopoulos Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Stars Stories



      Galaxies Stories



      Universe


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Loral O’Hara is returning home after six months aboard the International Space Station. During her time on the orbiting laboratory, O’Hara contributed to dozens of scientific investigations and technology demonstrations to prepare for future space exploration missions and generate innovations and benefits for humanity on Earth.
      Here is a look at some of the scientific activities O’Hara conducted during her mission:
      Biking for Better Health
      NASA NASA astronaut Loral O’Hara is among the first astronauts participating in the CIPHER (Complement of Integrated Protocols for Human Exploration Research on Varying Mission Durations) investigation. CIPHER examines physiological and psychological changes that humans undergo during spaceflight. One of the protocols measures changes in cardiorespiratory and muscle fitness during exercise. Collecting data from crew members on missions of different durations supports development of ways to protect crew member health on a long mission such as a trip to Mars.
      Tending the Space Garden
      NASA NASA astronaut Loral O’Hara works with tomato plants grown for Plant Habitat-06, an investigation using genetic analysis to examine how spaceflight affects plant immune function and production. Results could support development of crops to provide food and other services on future space missions. On Earth, pathogens are responsible for up to 40% of global crop loss, and insight into the interaction between gravity and how plants respond to pathogens could inform strategies to enhance crop growth and productivity.
      Reading Radiation Exposure
      NASA Crew members pose with active dosimeters: left to right, Andreas Mogensen of ESA (European Space Agency), NASA astronauts Loral O’Hara and Jasmin Moghbeli, and Satoshi Furukawa of JAXA (Japan Aerospace Exploration Agency). These devices monitor individual radiation exposure for the International Space Station Internal Radiation Monitoring investigation, which aims to keep ionizing radiation exposure at levels acceptable for maintaining crew member health and safety and ensuring the success of their missions.
      Understanding Bone Loss
      NASA Bone loss is a major problem of aging on Earth and a serious health concern for astronauts. MABL-A (Microgravity Associated Bone Loss-A) examines the effect of microgravity on bone marrow mesenchymal stem cells, which produce bone-forming cells and play a role in making and repairing skeletal tissues. NASA astronaut Loral O’Hara works inside the Life Science Glovebox for the investigation, which could improve understanding of the mechanisms behind bone loss and support development of ways to better protect crew members and people on Earth from its effects.
      Bringing in the Cold
      NASA NASA astronauts Jasmin Moghbeli and Loral O’Hara pose in front of the Cold Atom Lab. The lab produces clouds of atoms so cold that they have almost no motion, allowing researchers to observe their fundamental behaviors and quantum characteristics. Physicists have long pursued ever colder temperatures, and microgravity may make it possible to achieve those temperatures for longer periods of time. The Cold Atom Lab research could facilitate the development of new quantum technology.
      Taking Out the Heat
      NASA NASA astronaut Loral O’Hara works on MaRVIn-PCIM (Microgravity Research for Versatile Investigations-Phase Change in Mixtures), which examines the dynamics of liquid and vapor flow inside a wickless heat pipe. These devices, used to dissipate heat to cool satellites and electronics, operate differently in microgravity than on Earth. Results could support development of lighter and more efficient cooling devices for future space exploration.
      Preparing for a Walk in Space
      NASA NASA astronaut Loral O’Hara tests components of her spacesuit in preparation for a spacewalk. O’Hara and NASA astronaut Jasmin Moghbeli conducted a spacewalk together on Nov 1, 2023. It took the duo six hours and 42 minutes to complete tasks that included working on hardware that enables the space station’s solar arrays to track the Sun, helping to provide power for scientific operations on the orbiting lab.
      Creating Cardiac Tissues
      NASA NASA astronaut Loral O’Hara works on the Redwire Cardiac Bioprinting Investigation (BFF Cardiac), which studies bio-printed cardiac tissues. Higher-quality 3D tissues can be printed in microgravity, where density layers, settling, and other effects of gravity are absent. This technology supports development of ways to print food and medicine on demand on future missions, reducing mass and cost at launch and improving crew health and safety. Results also could advance technologies to create replacement organs and tissues for transplant on Earth, helping to alleviate shortages.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned above.
      Download full-resolution versions of all photos in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      ISS National Laboratory
      Station Science 101
      Opportunities and Information for Researchers
      View the full article
    • By Space Force
      STEMtoSpace started as a campaign in honor of the Space Force’s first birthday and was designed to connect Guardians with K-12 students to share the importance of science, technology, engineering and math, or STEM.

      View the full article
  • Check out these Videos

×
×
  • Create New...