Jump to content

4K Footage | SpaceX Launches


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      NASA’s Tiny BurstCube Mission Launches to Study Cosmic Blasts
      BurstCube, shown in this artist’s concept, will orbit Earth as it hunts for short gamma-ray bursts. NASA’s Goddard Space Flight Center Conceptual Image Lab NASA’s BurstCube, a shoebox-sized satellite designed to study the universe’s most powerful explosions, is on its way to the International Space Station.
      The spacecraft travels aboard SpaceX’s 30th Commercial Resupply Services mission, which lifted off at 4:55 p.m. EDT on Thursday, March 21, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. After arriving at the station, BurstCube will be unpacked and later released into orbit, where it will detect, locate, and study short gamma-ray bursts – brief flashes of high-energy light.
      “BurstCube may be small, but in addition to investigating these extreme events, it’s testing new technology and providing important experience for early career astronomers and aerospace engineers,” said Jeremy Perkins, BurstCube’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The BurstCube satellite sits in its flight configuration in this photo taken in the Goddard CubeSat Lab in 2023. NASA/Sophia Roberts
      Download high-resolution images and videos of BurstCube.

      Short gamma-ray bursts usually occur after the collisions of neutron stars, the superdense remnants of massive stars that exploded in supernovae. The neutron stars can also emit gravitational waves, ripples in the fabric of space-time, as they spiral together.
      Astronomers are interested in studying gamma-ray bursts using both light and gravitational waves because each can teach them about different aspects of the event. This approach is part of a new way of understanding the cosmos called multimessenger astronomy.
      The collisions that create short gamma-ray bursts also produce heavy elements like gold and iodine, an essential ingredient for life as we know it.
      Currently, the only joint observation of gravitational waves and light from the same event – called GW170817 – was in 2017. It was a watershed moment in multimessenger astronomy, and the scientific community has been hoping and preparing for additional concurrent discoveries since.
      “BurstCube’s detectors are angled to allow us to detect and localize events over a wide area of the sky,” said Israel Martinez, research scientist and BurstCube team member at the University of Maryland, College Park and Goddard. “Our current gamma-ray missions can only see about 70% of the sky at any moment because Earth blocks their view. Increasing our coverage with satellites like BurstCube improves the odds we’ll catch more bursts coincident with gravitational wave detections.”
      BurstCube’s main instrument detects gamma rays with energies ranging from 50,000 to 1 million electron volts. (For comparison, visible light ranges between 2 and 3 electron volts.)
      When a gamma ray enters one of BurstCube’s four detectors, it encounters a cesium iodide layer called a scintillator, which converts it into visible light. The light then enters another layer, an array of 116 silicon photomultipliers, that converts it into a pulse of electrons, which is what BurstCube measures. For each gamma ray, the team sees one pulse in the instrument readout that provides the precise arrival time and energy. The angled detectors inform the team of the general direction of the event.
      BurstCube belongs to a class of spacecraft called CubeSats. These small satellites come in a range of standard sizes based on a cube measuring 10 centimeters (3.9 inches) across. CubeSats provide cost-effective access to space to facilitate groundbreaking science, test new technologies, and help educate the next generation of scientists and engineers in mission development, construction, and testing.
      Engineers attach BurstCube to the platform of a thermal vacuum chamber at Goddard ahead of testing. NASA/Sophia Roberts “We were able to order many of BurstCube’s parts, like solar panels and other off-the-shelf components, which are becoming standardized for CubeSats,” said Julie Cox, a BurstCube mechanical engineer at Goddard. “That allowed us to focus on the mission’s novel aspects, like the made-in-house components and the instrument, which will demonstrate how a new generation of miniaturized gamma-ray detectors work in space.”
      BurstCube is led by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the University of the Virgin Islands; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center in Huntsville.
      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      (301) 286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 21, 2024 Related Terms
      Astrophysics BurstCube CubeSats Gamma Rays Gamma-Ray Bursts Gravitational Waves International Space Station (ISS) Neutron Stars Sensing the Universe & Multimessenger Astronomy The Universe Explore More
      4 min read NASA’s Hubble Finds that Aging Brown Dwarfs Grow Lonely


      Article


      8 hours ago
      2 min read Hubble Views a Galaxy Under Pressure


      Article


      6 days ago
      3 min read Hubble Tracks Jupiter’s Stormy Weather


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA’s SpaceX 30th commercial resupply mission launched at 4:55 p.m. EDT, Thursday, March 21 , from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.Credit: NASA/Madison Tuttle Following a successful launch of NASA’s SpaceX 30th commercial resupply mission, new scientific experiments and technology demonstrations for the agency are on the way to the International Space Station, including studies of technologies to measure sea ice and plant growth in space.
      SpaceX’s Dragon resupply spacecraft, carrying more than 6,000 pounds of cargo to the orbiting laboratory, launched on the company’s Falcon 9 rocket at 4:55 p.m. EDT Thursday, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      The cargo spacecraft is scheduled to autonomously dock at the space station on Saturday, March 23, at approximately 7:30 a.m. and remain at the orbital outpost for about a month.
      Live coverage of the arrival will begin at 5:30 a.m. on NASA+, NASA Television, and on the agency’s website. Learn how to stream NASA TV through a variety of platforms.
      The Dragon will deliver a new set of sensors for Astrobee robots to support automated 3D sensing, mapping, and situational awareness functions. These systems could support future Gateway and lunar surface missions by providing automated maintenance and surface scanning using rovers. Additionally, the spacecraft will deliver BurstCube, a small satellite that is designed to study gamma-ray bursts that occur when two neutron stars collide. This satellite could widen our coverage of the gamma-ray sky, improving our chances of studying bursts both with light and gravitational waves, or ripples in space-time, detected by ground-based observatories.
      Finally, the spacecraft also will deliver sampling hardware for Genomic Enumeration of Antibiotic Resistance in Space (GEARS), an initiative that will test different locations of the space station for antibiotic-resistant microbes. In-flight gene sequencing could show how these bacteria adapt to the space environment, providing knowledge that informs measures to protect astronauts on future long-duration missions.
      These are just a few of the hundreds of investigations conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Advances from this scientific research will help keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low Earth orbit to the Moon through NASA’s Artemis campaign, in advance of the first crewed mission to Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about NASA commercial resupply services missions at:
      https://www.nasa.gov/international-space-station/commercial-resupply/
      -end-
      Josh Finch / Julian Coltre / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / julian.n.coltre@nasa.gov / claire.a.o’shea@nasa.gov
      Stephanie Plucinsky / Steven Siceloff 
      Kennedy Space Center, Florida 
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov 
      Sandra Jones
      Johnson Space Center, Houston 
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Mar 21, 2024 LocationNASA Headquarters Related Terms
      ISS Research Commercial Resupply International Space Station (ISS) SpaceX Commercial Resupply View the full article
    • By Amazing Space
      LIVE SpaceX CRS-30 launch
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Wallops Flight Facility supported the successful launch of a Rocket Lab Electron rocket at X:XX a.m. EDT, Thursday, March 21, from Virginia’s Mid-Atlantic Regional Spaceport on Wallops Island, Virginia.  
      The rocket carried three collaborative research missions for the National Reconnaissance Office (NRO). The mission, dubbed NROL-123, was the first NRO mission to fly on a Rocket Lab rocket launched from the United States. 
      ​Rocket Lab’s Electron rocket lifts off from NASA’s Wallops Flight Facility March 21, 2024, at X a.m. EDT. The rocket carried small research satellites for the NROL-123 mission for National Reconnaissance Office. NASA/Jamie Adkins “We are proud to support our commercial and government launch partners with world-class launch range, safety and support services,” said David L. Pierce, Wallops Flight Facility director. “It was a picture perfect launch following a smooth countdown.” 
      This was the third Electron launch from Wallops and the fourth launch from Rocket Lab’s Launch Complex-2 in Virginia.  
      The next launch from Wallops is scheduled April 8, 2024, during the solar eclipse. The Atmospheric Perturbations around Eclipse Path (APEP) mission will launch three sounding rockets before, during, and after peak eclipse time to study how the sudden drop in sunlight affects the Earth’s upper atmosphere.  
      NASA’s Wallops Flight Facility provides agile, low-cost flight and launch range services to meet government and commercial sector needs for accessing flight regimes worldwide from the Earth’s surface to the Moon and beyond. Wallops’ flight assets – ranging from research aircraft, unmanned aerial systems, and high-altitude balloons to suborbital and orbital rockets – provide a dynamic range of flight capabilities. In addition, operational launch range and airfield assets at the facility enable science, aerospace, defense, and industry sectors. 
      Share
      Details
      Last Updated Mar 21, 2024 EditorJamie AdkinsContactJeremy Eggers Related Terms
      Wallops Flight Facility View the full article
  • Check out these Videos

×
×
  • Create New...