Members Can Post Anonymously On This Site
Satellites launched to boost connectivity and create jobs
-
Similar Topics
-
By NASA
Othmane Benafan is a NASA engineer whose work is literally reshaping how we use aerospace materials — he creates metals that can shape shift. Benafan, a materials research engineer at NASA’s Glenn Research Center in Cleveland, creates metals called shape memory alloys that are custom-made to solve some of the most pressing challenges of space exploration and aviation.
“A shape memory alloy starts off just like any other metal, except it has this wonderful property: it can remember shapes,” Benafan says. “You can bend it, you can deform it out of shape, and once you heat it, it returns to its shape.”
An alloy is a metal that’s created by combining two or more metallic elements. Shape memory alloys are functional metals. Unlike structural metals, which are fixed metal shapes used for construction or holding heavy objects, functional metals are valued for unique properties that enable them to carry out specific actions.
NASA often needs materials with special capabilities for use in aircraft and spacecraft components, spacesuits, and hardware designed for low-Earth orbit, the Moon, or Mars. But sometimes, the ideal material doesn’t exist. That’s where engineers like Benafan come in.
“We have requirements, and we come up with new materials to fulfill that function,” he said. The whole process begins with pen and paper, theories, and research to determine exactly what properties are needed and how those properties might be created. Then he and his teammates are ready to start making a new metal.
“It’s like a cooking show,” Benafan says. “We collect all the ingredients — in my case, the metals would be elements from the periodic table, like nickel, titanium, gold, copper, etc. — and we mix them together in quantities that satisfy the formula we came up with. And then we cook it.”
Othmane Benafan, a materials research engineer, develops a shape memory alloy in a laboratory at NASA’s Glenn Research Center in Cleveland. These elemental ingredients are melted in a container called a crucible, then poured into the required shape, such as a cylinder, plate, or tube. From there, it’s subjected to temperatures and pressures that shape and train the metal to change the way its atoms are arranged every time it’s heated or cooled.
Shape memory alloys created by Benafan and his colleagues have already proven useful in several applications. For example, the Shape Memory Alloy Reconfigurable Technology Vortex Generator (SMART VG) being tested on Boeing aircraft uses the torque generated by a heat-induced twisting motion to raise and lower a small, narrow piece of hardware installed on aircraft wings, resulting in reduced drag during cruise conditions. In space, the 2018 Advanced eLectrical Bus (ALBus) CubeSat technology demonstration mission included the use of a shape memory alloy to deploy the small satellite’s solar arrays and antennas. And Glenn’s Shape Memory Alloy Rock Splitters technology benefits mining and geothermal applications on Earth by breaking apart rocks without harming the surrounding environment. The shape memory alloy device is wrapped in a heater and inserted into a predrilled hole in the rock, and when the heater is activated, the alloy expands, creating intense pressure that drives the rock apart.
Benafan’s fascination with shape memory alloys started after he immigrated to the United States from Morocco at age 19. He began attending night classes at the Valencia Community College (now Valencia College), then went on to graduate from the University of Central Florida in Orlando. A professor did a demonstration on shape memory alloys and that changed Benafan’s life forever. Now, Benafan enjoys helping others understand related topics.
“Outside of work, one of the things I like to do most is make technology approachable to someone who may be interested but may not be experienced with it just yet. I do a lot of community outreach through camps or lectures in schools,” he said.
He believes a mentality of curiosity and a willingness to fail and learn are essential for aspiring engineers and encourages others to pursue their ideas and keep trying.
“You know, we grow up with that mindset of falling and standing up and trying again, and that same thing applies here,” Benafan said. “The idea is to be a problem solver. What are you trying to contribute? What problem do you want to solve to help humanity, to help Earth?”
To learn more about the wide variety of exciting and unexpected jobs at NASA, check out the Surprisingly STEM video series.
Explore More
3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Article 3 hours ago 3 min read NASA Announces Winners of 2025 Student Launch Competition
Article 1 day ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
Article 1 day ago View the full article
-
By NASA
Christina Zeringue is the chief safety and mission assurance officer at NASA’s Stennis Space Center. She is responsible for the safety and mission success of all activities, including rocket propulsion testing and operation of the NASA Stennis federal city.NASA/Danny Nowlin Christina Zeringue remembers being 10 years old, looking to the sky through her new telescope to view the Moon and planets on Christmas night. It opened her eyes to space and inspired her journey from the backyard to NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
“I became fascinated with astronomy and learning about stars and constellations, the solar system and planetary orbits, solar and lunar eclipses, and challenging myself to find stars and nebula at different distances from Earth,” Zeringue said. “I was able to do and learn so much just from my own yard.”
She became obsessed with following the development and images produced from the Hubble Space Telescope, which launched on a space shuttle that featured three main engines tested at NASA Stennis.
Zeringue desired to learn more about the universe and find a way to be part of the effort to continue exploring. The Kenner, Louisiana, native ultimately made her way to NASA Stennis following graduation from the University of New Orleans.
As the NASA Stennis chief safety and mission assurance officer, Zeringue is responsible for safety and mission success of all site activities. These include both rocket propulsion testing and operation of the NASA Stennis federal city, where NASA and more than 50 federal, state, academic, public, and private aerospace, technology, and research organizations located onsite share in operating costs while pursuing individual missions.
Christina Zeringue enjoys viewing the partial solar eclipse on Oct. 14, 2023, from Slidell, Louisiana. NASA/Danny Nowlin “I have a broad range of responsibilities, which allows me to work with many talented people, pushes me to learn and develop new skills, and keeps my work interesting every day,” Zeringue said.
Zeringue’s work has supported NASA’s Artemis campaign to return astronauts to the Moon through her contributions to RS-25 engine testing and Green Run testing of NASA’s SLS (Space Launch System) core stage ahead of the successful launch of Artemis I.
The Pearl River, Louisiana, resident often encounters engineering or safety challenges where there is not a clear answer to the solution.
“We work together to understand new problems, determine the best course of action, and create new processes and ways to handle every challenge,” she said.
In total, Zeringue has worked 28 years at NASA Stennis – 14 as a contractor and 14 with NASA.
As a contractor, Zeringue initially worked as test article engineer for the Space Shuttle Main Engine Program. She followed that by serving as the quality systems manager, responsible for the quality engineering and configuration management of various engine systems, such as the space shuttle main engine, the RS-68 engine or Delta IV vehicles, and the J-2X upper stage engine.
Zeringue transitioned to NASA in 2011, first as a facility systems safety engineer and then as chief of the operations support division within the NASA Stennis Safety and Mission Assurance Directorate.
Her proudest career moment came early when working on final inspection of a new high pressure fuel turbopump. She noted a piece of contamination lodged behind the turbine shroud, which had been missed in previous inspections. Ultimately, the part was returned for disassembly before its next flight.
“While our post-test inspections can sometimes become routine, that day still stands out to me as a way that I really knew I directly contributed to the safety of our astronauts,” she said.
From the time Zeringue first looked through her new telescope, to her role as NASA Stennis chief safety and mission assurance officer, each moment along the way has contributed to the advice Zeringue shares with anyone considering a career with NASA. “Stay curious, invest in your own development, share your expertise with others, and try something new every day,” she said.
Learn More About Careers at NASA Stennis Explore More
6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
Article 2 weeks ago 4 min read NASA Stennis Releases First Open-Source Software
Article 4 weeks ago 5 min read NASA Stennis Software is Built for Future Growth
Article 4 weeks ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Boost Treadmills cofounder Sean Whalen runs on the Boost 2. The treadmill uses air pressure to counter gravity, making running possible for people with injuries and other conditions.Credit: Boost Treadmills LLC The antigravity treadmill, which has benefits in space and on Earth, was pioneered by Robert Whalen at NASA’s Ames Research Center in Silicon Valley, California, in the 1980s and ’90s.
Whalen built a system that placed a pressurized bulb over the user’s upper body, creating downward pressure that could simulate gravity for astronauts running on a treadmill in space. With support from Ames, he prototyped a treadmill in his garage that reversed the concept, with the bubble enclosing the user from the waist down to create lift. He thought the system could help patients rehabilitate.
Years later, his son recalled the prototype in the garage and turned it into the AlterG concept. The AlterG treadmill, which uses air pressure to take weight off the user, had proven popular with professional sports teams and rehabilitation clinics, but Whalen and his friends wanted to make it affordable enough for home use, so they founded Boost Treadmills in 2017.
Now Boost, based in Palo Alto, California, has cut the price of an antigravity treadmill by almost two thirds. In 2022, the company released the Boost 2, which is quieter and more energy-efficient than its predecessor, among other improvements. The Boost 2 has roughly tripled sales to individuals, progressing on the company’s goal of moving into the home.
Offloading weight during exercise is a clear solution for patients whose injuries prevent them from walking or running at their full weight, but Boost says it can be equally valuable for people with long-term mobility impairments, such as obesity or arthritis.
Advanced through NASA, the antigravity treadmill is one of many space-inspired technologies benefitting life on Earth.
Read More Share
Details
Last Updated May 29, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
Article 1 week ago 3 min read Meet Four NASA Inventors Improving Life on Earth and Beyond
Article 3 weeks ago 2 min read NASA Technology Enables Leaps in Artificial Intelligence
Artificial intelligence lets machines communicate autonomously
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Technology Transfer & Spinoffs
Tranquility Module
View the full article
-
By European Space Agency
ESA’s groundbreaking Biomass satellite, designed to provide unprecedented insights into the world’s forests and their crucial role in Earth’s carbon cycle, has been launched. The satellite lifted off aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana, on 29 April at 11:15 CEST (06:15 local time).
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.