Jump to content

NASA Supports Artemis Accords Signatories Advancing Exploration


Recommended Posts

  • Publishers
Posted
Flags of all of the countries that have signed the Artemis Accords on a black background with the Moon partially displayed
Credit: NASA

The United States participated in an international Artemis Accords workshop May 21-22 to advance the safe and responsible exploration of the Moon, Mars, and beyond. Hosted by the United Arab Emirates (UAE), which was represented by the UAE Space Agency, the workshop took place at the Abu Dhabi National Exhibition Centre.

The Artemis Accords are a set of non-binding principles signed by nations for a peaceful and prosperous future in space for all of humanity to enjoy. In October 2020, under the first Trump administration, the accords were created, and since then, 54 countries have joined with the United States in committing to transparent and responsible behavior in space.

“Following President Trump’s visit to the Middle East, the United States built upon the successful trip through engagement with a global coalition of nations to further implement the accords – practical guidelines for ensuring transparency, peaceful cooperation, and shared prosperity in space exploration,” said acting NASA Administrator Janet Petro. “These accords represent a vital step toward uniting the world in the pursuit of exploration and scientific discovery beyond Earth. NASA is proud to lead in the overall accords effort, advancing the principles as we push the boundaries of human presence in space – for the benefit of all.”

Participants from 30 countries joined the discussions and a tabletop exercise centered on defining challenges for operating in a complex environment.

As the Artemis Accords workshop concluded Thursday, participants reaffirmed their commitment to upholding the principles outlined in the accords and to continue identifying best practices and guidelines for safe and sustainable exploration. The first workshop was hosted by Poland in 2023, followed by Canada in 2024.

Artemis Accords signatories have committed to sharing information about their activities to the United Nations of Committee on the Peaceful Uses of Outer Space and other appropriate channels. Transparency and communication are key to peaceful exploration.

The Artemis Accords signatories will gather for face-to-face discussions on the margins of the International Astronautical Congress in late September, where workshop recommendations and outcomes will be presented to the Artemis Accords principals. NASA anticipates additional countries will sign in the coming weeks and months.

The Artemis Accords are grounded in the Outer Space Treaty and other agreements, including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 

Learn more about the Artemis Accords at:

https://www.nasa.gov/artemis-accords

Share

Details

Last Updated
May 22, 2025
Editor
Jessica Taveau

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson NASA and the Department of Defense (DoD) teamed up June 11 and 12 to simulate emergency procedures they would use to rescue the Artemis II crew in the event of a launch emergency. The simulations, which took place off the coast of Florida and were supported by launch and flight control teams, are preparing NASA to send four astronauts around the Moon and back next year as part of the agency’s first crewed Artemis mission.
      The team rehearsed procedures they would use to rescue the crew during an abort of NASA’s Orion spacecraft while the SLS (Space Launch System) rocket is still on the launch pad, as well as during ascent to space. A set of test mannequins and a representative version of Orion called the Crew Module Test Article, were used during the tests.
      The launch team at NASA’s Kennedy Space Center in Florida, flight controllers in mission control at the agency’s Johnson Space Center in Houston, as well as the mission management team, all worked together, exercising their integrated procedures for these emergency scenarios.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025.NASA/Isaac Watson “Part of preparing to send humans to the Moon is ensuring our teams are ready for any scenario on launch day,” said Lakiesha Hawkins, NASA’s assistant deputy associate administrator for the Moon to Mars Program, and who also is chair of the mission management team for Artemis II. “We’re getting closer to our bold mission to send four astronauts around the Moon, and our integrated testing helps ensure we’re ready to bring them home in any scenario.”
      The launch pad abort scenario was up first. The teams conducted a normal launch countdown before declaring an abort before the rocket was scheduled to launch. During a real pad emergency, Orion’s launch abort system would propel Orion and its crew a safe distance away and orient it for splashdown before the capsule’s parachutes would then deploy ahead of a safe splashdown off the coast of Florida.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson For the simulated splashdown, the test Orion with mannequins aboard was placed in the water five miles east of Kennedy. Once the launch team made the simulated pad abort call, two Navy helicopters carrying U.S. Air Force pararescuers departed nearby Patrick Space Force Base. The rescuers jumped into the water with unique DoD and NASA rescue equipment to safely approach the spacecraft, retrieve the mannequin crew, and transport them for medical care in the helicopters, just as they would do in the event of an actual pad abort during the Artemis II mission.
      The next day focused on an abort scenario during ascent to space.
      The Artemis recovery team set up another simulation at sea 12 miles east of Kennedy, using the Orion crew module test article and mannequins. With launch and flight control teams supporting, as was the Artemis II crew inside a simulator at Johnson, the rescue team sprung into action after receiving the simulated ascent abort call and began rescue procedures using a C-17 aircraft and U.S. Air Force pararescuers. Upon reaching the capsule, the rescuers jumped from the C-17 with DoD and NASA unique rescue gear. In an actual ascent abort, Orion would separate from the rocket in milliseconds to safely get away prior to deploying parachutes and splashing down.
      Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for an ascent abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Thursday, June 12, 2025. NASA/Isaac Watson Rescue procedures are similar to those used in the Underway Recovery Test conducted off the California coast in March. This demonstration ended with opening the hatch and extracting the mannequins from the capsule, so teams stopped without completing the helicopter transportation that would be used during a real rescue.
      Exercising procedures for extreme scenarios is part of NASA’s work to execute its mission and keep the crew safe. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      View the full article
    • By NASA
      NASA/Kevin O’Brien NASA’s SLS (Space Launch System) solid rocket boosters are the largest, most powerful solid propellant boosters to ever fly. Standing 17 stories tall and burning approximately six tons of propellant every second, each booster generates 3.6 million pounds of a thrust for a total of 7.2 million pounds: more thrust than 14 four-engine jumbo commercial airliners. Together, the SLS twin boosters provide more than 75 percent of the total thrust at launch. Each booster houses eight booster separation motors which are responsible for separating the boosters from the core stage during flight.
      At the top of each booster is the frustum—a truncated cone-shaped structure that, along with the nose cone, forms the aerodynamic fairing. This frustum houses four of the separation motors, while the remaining four are located at the bottom within the aft skirt.
      Image Credit: NASA/Kevin O’Brien
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      A funky effect Einstein predicted, known as gravitational lensing — when a foreground galaxy magnifies more distant galaxies behind it — will soon become common when NASA’s Nancy Grace Roman Space Telescope begins science operations in 2027 and produces vast surveys of the cosmos.
      This image shows a simulated observation from NASA’s Nancy Grace Roman Space Telescope with an overlay of its Wide Field Instrument’s field of view. More than 20 gravitational lenses, with examples shown at left and right, are expected to pop out in every one of Roman’s vast observations. A journal paper led by Bryce Wedig, a graduate student at Washington University in St. Louis, Missouri, estimates that of those Roman detects, about 500 from the telescope’s High-Latitude Wide-Area Survey will be suitable for dark matter studies. By examining such a large population of gravitational lenses, the researchers hope to learn a lot more about the mysterious nature of dark matter.Credit: NASA, Bryce Wedig (Washington University), Tansu Daylan (Washington University), Joseph DePasquale (STScI) A particular subset of gravitational lenses, known as strong lenses, is the focus of a new paper published in the Astrophysical Journal led by Bryce Wedig, a graduate student at Washington University in St. Louis. The research team has calculated that over 160,000 gravitational lenses, including hundreds suitable for this study, are expected to pop up in Roman’s vast images. Each Roman image will be 200 times larger than infrared snapshots from NASA’s Hubble Space Telescope, and its upcoming “wealth” of lenses will vastly outpace the hundreds studied by Hubble to date.
      Roman will conduct three core surveys, providing expansive views of the universe. This science team’s work is based on a previous version of Roman’s now fully defined High-Latitude Wide-Area Survey. The researchers are working on a follow-up paper that will align with the final survey’s specifications to fully support the research community.
      “The current sample size of these objects from other telescopes is fairly small because we’re relying on two galaxies to be lined up nearly perfectly along our line of sight,” Wedig said. “Other telescopes are either limited to a smaller field of view or less precise observations, making gravitational lenses harder to detect.”
      Gravitational lenses are made up of at least two cosmic objects. In some cases, a single foreground galaxy has enough mass to act like a lens, magnifying a galaxy that is almost perfectly behind it. Light from the background galaxy curves around the foreground galaxy along more than one path, appearing in observations as warped arcs and crescents. Of the 160,000 lensed galaxies Roman may identify, the team expects to narrow that down to about 500 that are suitable for studying the structure of dark matter at scales smaller than those galaxies.
      “Roman will not only significantly increase our sample size — its sharp, high-resolution images will also allow us to discover gravitational lenses that appear smaller on the sky,” said Tansu Daylan, the principal investigator of the science team conducting this research program. Daylan is an assistant professor and a faculty fellow at the McDonnell Center for the Space Sciences at Washington University in St. Louis. “Ultimately, both the alignment and the brightness of the background galaxies need to meet a certain threshold so we can characterize the dark matter within the foreground galaxies.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows how a background galaxy’s light is lensed or magnified by a massive foreground galaxy, seen at center, before reaching NASA’s Roman Space Telescope. Light from the background galaxy is distorted, curving around the foreground galaxy and appearing more than once as warped arcs and crescents. Researchers studying these objects, known as gravitational lenses, can better characterize the mass of the foreground galaxy, which offers clues about the particle nature of dark matter.Credit: NASA, Joseph Olmsted (STScI) What Is Dark Matter?
      Not all mass in galaxies is made up of objects we can see, like star clusters. A significant fraction of a galaxy’s mass is made up of dark matter, so called because it doesn’t emit, reflect, or absorb light. Dark matter does, however, possess mass, and like anything else with mass, it can cause gravitational lensing.
      When the gravity of a foreground galaxy bends the path of a background galaxy’s light, its light is routed onto multiple paths. “This effect produces multiple images of the background galaxy that are magnified and distorted differently,” Daylan said. These “duplicates” are a huge advantage for researchers — they allow multiple measurements of the lensing galaxy’s mass distribution, ensuring that the resulting measurement is far more precise.
      Roman’s 300-megapixel camera, known as its Wide Field Instrument, will allow researchers to accurately determine the bending of the background galaxies’ light by as little as 50 milliarcseconds, which is like measuring the diameter of a human hair from the distance of more than two and a half American football fields or soccer pitches.
      The amount of gravitational lensing that the background light experiences depends on the intervening mass. Less massive clumps of dark matter cause smaller distortions. As a result, if researchers are able to measure tinier amounts of bending, they can detect and characterize smaller, less massive dark matter structures — the types of structures that gradually merged over time to build up the galaxies we see today.
      With Roman, the team will accumulate overwhelming statistics about the size and structures of early galaxies. “Finding gravitational lenses and being able to detect clumps of dark matter in them is a game of tiny odds. With Roman, we can cast a wide net and expect to get lucky often,” Wedig said. “We won’t see dark matter in the images — it’s invisible — but we can measure its effects.”
      “Ultimately, the question we’re trying to address is: What particle or particles constitute dark matter?” Daylan added. “While some properties of dark matter are known, we essentially have no idea what makes up dark matter. Roman will help us to distinguish how dark matter is distributed on small scales and, hence, its particle nature.”
      Preparations Continue
      Before Roman launches, the team will also search for more candidates in observations from ESA’s (the European Space Agency’s) Euclid mission and the upcoming ground-based Vera C. Rubin Observatory in Chile, which will begin its full-scale operations in a few weeks. Once Roman’s infrared images are in hand, the researchers will combine them with complementary visible light images from Euclid, Rubin, and Hubble to maximize what’s known about these galaxies.
      “We will push the limits of what we can observe, and use every gravitational lens we detect with Roman to pin down the particle nature of dark matter,” Daylan said.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Claire Blome
      Space Telescope Science Institute, Baltimore, Md.
      Share
      Details
      Last Updated Jun 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Dark Matter Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 2 months ago 5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 2 years ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 3 months ago View the full article
    • By NASA
      Presenters and NASA Glenn Research Center’s Silver Snoopy Award recipients at the center on Wednesday, May 14, 2025. Left to right: Deputy Center Director Dawn Schaible, Ron Johns, Joshua Finkbeiner, Rula Coroneos, Tyler Hickman, and astronaut Randy Bresnik. Credit: NASA/Sara Lowthian-Hanna  Four of NASA Glenn Research Center’s employees have received the coveted NASA Silver Snoopy Award. This award, overseen by NASA’s Space Flight Awareness program, is a special honor given to NASA employees and contractors for their outstanding achievements related to flight safety and mission success. It is the astronauts’ personal award to recognize excellence and is given to less than 1% of the workforce annually.  
      Deputy Center Director Dawn Schaible, joined by astronaut Randy Bresnik, presented the awards at the center in Cleveland on May 14. Bresnik was part of a crew in 2009 that delivered 30,000 pounds of essential parts and equipment to the International Space Station. He served as the commander of the space station for Expedition 53 and flight engineer for Expedition 52. 
      The recipients include Rula Coroneos, Joshua Finkbeiner, Tyler Hickman, and Ron Johns. Each of the honorees has played a crucial role in supporting the Artemis campaign, which will explore the Moon and prepare for human missions to Mars. The award recipients have made significant contributions to the success of the Orion spacecraft and its European Service Module and have been dedicated to the safety and success of Artemis I and upcoming Artemis missions.  
      Return to Newsletter View the full article
    • By NASA
      3 Min Read I Am Artemis: Ernesto Garcia
      Ernesto Garcia, engineering manager at Rayotech Scientific, Inc., holds a test article of one of the windowpanes for the Orion spacecraft. Credits: NASA/Rad Sinyak Listen to this audio excerpt from Ernesto Garcia, Rayotech Scientific engineering manager:
      0:00 / 0:00
      Your browser does not support the audio element.
      My name is Ernesto Garcia, and I am an engineering manager at Rayotech Scientific in San Diego, in charge of fabricating the windowpanes for the Orion spacecraft.

      Fabricating Orion’s windowpanes entails a very strict manufacturing process. It involves first starting from a giant sheet of glass that we cut down to near net shape. Once we get down to that near net shape, we perform a grinding operation. We grind the window edges and grind the faces.

      The windows are visible on the Orion spacecraft crew module for Artemis I, shown here on May 2, 2019, undergoing direct field acoustic testing at NASA’s Kennedy Space Center in Florida.NASA/Rad Sinyak Once we do all that grinding, we perform a specialized process where we actually strengthen the edges of the window. Since most of the window’s strength comes from the edges, we want to make sure that those are perfect and pristine, and so we minimize any subsurface damage that is around that. Then we send it off to get polished and coated.

      After that, we perform pressure testing in our lab, which is really the most important thing that is required for this window to prove that it can survive in space. We apply the required stresses to make sure that the windows can survive on the Orion spacecraft.

      The opportunity to be part of this program has been something that I’m really proud of.


      When I was a child, I always wanted to work for NASA — and now, I work directly with NASA engineers, work with the windows first-hand, and work to develop processes.
      Ernesto Garcia
      Engineering Manager, Rayotech Scientific
      Coming up with ideas of how to manufacture [the windows] and then coming up with the pressure testing equipment to verify that they are going to survive in space was extremely fulfilling.

      Being able to participate in Artemis I and seeing those windows on that [Orion spacecraft] — seeing it go into space — was probably one of the most rewarding things I’ve ever experienced besides having my kids. My children are immensely proud of what I’m doing. Seeing my kids’ reactions when I’m letting them know that I’m working directly with people that are putting things in space, with people that are making changes in the world — it’s something that inspires them.

      NASA astronauts and Artemis II crew members Reid Wiseman and Victor Glover look through a window of Orion spacecraft mockup during Post Insertion and Deorbit Preparation training at the Space Vehicle Mockup Facility in Houston, Texas. The crew practiced getting the Orion spacecraft configured once in orbit, how to make it habitable, and suited up in their entry pressure suits to prepare for their return from the Moon.Mark Sowa – NASA – JSC I imagine it will be a very special experience for the Artemis II astronauts to look out of these windows on their mission around the Moon. For them to be able to just look out and see what’s around them…to explore what else is out there from their eyes, not a camera’s point of view. It’s going to be pretty extraordinary that they’ll be able to see from their eyes — through our windows — something that not everybody else gets to see.



      About the Author
      Erika Peters

      Share
      Details
      Last Updated Jun 10, 2025 Related Terms
      Orion Program I Am Artemis Orion Multi-Purpose Crew Vehicle Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 8 hours ago 3 min read I Am Artemis: Lili Villarreal
      Lili Villarreal fell in love with space exploration from an early age when her and…
      Article 6 days ago 4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...