Jump to content

What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


Recommended Posts

  • Publishers
Posted

6 min read

What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years

One year on, NASA scientists are still making huge discoveries about the largest geomagnetic storm to hit Earth in two decades, the Gannon storm. The findings are helping us better understand and prepare for the ways in which the Sun’s activity can affect us.

On May 10, 2024, the first G5 or “severe” geomagnetic storm in over two decades hit Earth. The event did not cause any catastrophic damages, but it did produce surprising effects on Earth. The storm, which has been called the best-documented geomagnetic storm in history, spread auroras to unusually low latitudes and produced effects spanning from the ground to near-Earth space. Data captured during this historic event will be analyzed for years to come, revealing new lessons about the nature of geomagnetic storms and how best to weather them. Credit: NASA/Joy Ng

One year ago today, representatives from NASA and about 30 other U.S. government agencies gathered for a special meeting to simulate and address a threat looming in space. The threat was not an asteroid or aliens, but our very own life-giving Sun.

The inaugural Space Weather Tabletop Exercise was supposed to be a training event, where experts could work through the real-time ramifications of a geomagnetic storm, a global disruption to Earth’s magnetic field. Driven by solar eruptions, geomagnetic storms can decimate satellites, overload electrical grids, and expose astronauts to dangerous radiation. Minimizing the impacts of such storms requires close coordination, and this meeting was their chance to practice.

Then, their simulation turned into reality.

“The plan was to run through a hypothetical scenario, finding where our existing processes worked and where they needed improvement,” said Jamie Favors, director of NASA’s Space Weather Program at NASA Headquarters in Washington. “But then our hypothetical scenario was interrupted by a very real one.”

On May 10, 2024, the first G5 or “severe” geomagnetic storm in over two decades hit Earth. The event, named the Gannon storm in memory of leading space weather physicist Jennifer Gannon, did not cause any catastrophic damages. But a year on, key insights from the Gannon storm are helping us understand and prepare for future geomagnetic storms.

A detailed, fiery image of the Sun showing bright solar flares and textured surface, with a small inset at the bottom right comparing the tiny size of Earth to the massive scale of the Sun.
NASA’s Solar Dynamics Observatory captured this image of the Sun on May 7, 2024, in extreme ultraviolet light (at a wavelength of 304 Ångstroms). At center, the active region that instigated the Gannon storm stretches approximately 17 times the size of Earth. (A scaled image of Earth is inset for size reference.) In early May 2024, the active region released a chain of powerful solar eruptions, including several coronal mass ejections, or CMEs — giant clouds of solar particles — that merged to form a superstorm that reached Earth on May 10. Ahead of the storm, the National Oceanic and Atmospheric Administration, or NOAA, issued its first severe geomagnetic storm watch in almost two decades.
NASA/Helioviewer

Storm Consequences

The Gannon storm had effects on and off our planet.

On the ground, some high-voltage lines tripped, transformers overheated, and GPS-guided tractors veered off-course in the Midwestern U.S., further disrupting planting that had already been delayed by heavy rains that spring.

A green tractor with yellow wheels pulls a red trailer across a flat, dirt-covered field with some trees, a field of green plants, and a partly cloudy sky in the background.
Some modern tractors use GPS to help farmers plant efficiently and maximize crop yields. During the Gannon storm in May 2024, however, certain GPS-guided tractor models veered off course or stopped working, disrupting or delaying planting for many U.S. farmers.
Storyblocks

“Not all farms were affected, but those that were lost on average about $17,000 per farm,” said Terry Griffin, a professor of Agricultural Economics at Kansas State University. “It’s not catastrophic, but they’ll miss it.”

In the air, the threat of higher radiation exposure, as well as communication and navigation losses, forced trans-Atlantic flights to change course.


May%2011%202024%20flight%20patterns.png
May%2018%202024%20flight%20patterns.png
May 11, 2024
May 18, 2024

May%2011%202024%20flight%20patterns.png?

May%2018%202024%20flight%20patterns.png?

May%2011%202024%20flight%20patterns.png?
May%2018%202024%20flight%20patterns.png?

May 11, 2024

May 18, 2024

Before and After

Trans-Atlantic Flights Rerouted during Gannon Storm

May 11, 2024 – May 18, 2024


During the Gannon storm on May 10 and 11, 2024, many trans-Atlantic flights took more southerly routes across the ocean to avoid the risk of higher radiation for passengers and crew, as well as to avoid potential communication and navigation losses closer to the North Pole. The first image shows a snapshot of flight patterns on May 11, 2024, at 3:30 UTC (11:30 p.m. EDT on May 10) during the Gannon storm, when flights were redirected to more southern routes. The second image shows the flight patterns one week later, on May 18, 2024, at 3:30 UTC as flights followed their typical route. Credit: Flightradar24

During the storm, Earth’s upper atmospheric layer called the thermosphere heated to unusually high temperatures. At 100 miles altitude, the temperature typically peaks at 1,200 degrees Fahrenheit, but during the storm it surpassed 2,100 degrees Fahrenheit. NASA’s GOLD (Global-scale Observations of the Limb and Disk) mission observed the atmosphere expanding from the heat to create a strong wind that lofted heavy nitrogen particles higher.

A circular heatmap shows a swirling pattern of colors, with red and yellow regions indicating higher values, and blue and green areas showing lower values. The overlay covers the Atlantic Ocean and parts of surrounding continents.
The unique swirls in this image of GOLD data, show the ratio of lighter oxygen to nitrogen — a key atmospheric indicator — that exhibited a previously unseen structure in Earth’s thermosphere.
Evans et al. 2024

In orbit, the expanded atmosphere increased drag on thousands of satellites. NASA’s ICESat-2 lost altitude and entered safe mode while NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) CubeSat deorbited prematurely five months after the storm. Others, such as the European Space Agency’s Sentinel mission, required more power to maintain their orbits and perform maneuvers to avoid collisions with space debris.

The storm also dramatically changed the structure of an atmospheric layer called the ionosphere. A dense zone of the ionosphere that normally covers the equator at night dipped toward the South Pole in a check mark shape, causing a temporary gap near the equator.

The Gannon storm also rocked Earth’s magnetosphere, the magnetic bubble surrounding the planet. Data from NASA missions MMS (Magnetospheric Multiscale) and THEMIS-ARTEMIS — short for Time History of Events and Macroscale Interactions-Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun — saw giant, curling waves of particles and rolled-up magnetic fields along the edge of the CMEs. These waves were perfectly sized to periodically dump extra magnetic energy and mass into the magnetosphere upon impact, creating the largest electrical current seen in the magnetosphere in 20 years.

Incoming energy and particles from the Sun also created two new temporary belts of energetic particles within the magnetosphere. Discovered by CIRBE, these belts formed between the Van Allen radiation belts that permanently surround Earth. The belt’s discovery is important to spacecraft and astronauts that can be imperiled by high-energy electrons and protons in the belts.

Illustration of Earth surrounded by colorful, concentric rings representing the Van Allen radiation belts, with white magnetic field lines arching around the planet against a black space background.
The Gannon storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. The discovery of the new belts is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
NASA/Goddard Space Flight Center/Kristen Perrin

Unusual Auroras

The storm also ignited auroras around the globe, including places where these celestial light shows are rare. NASA’s Aurorasaurus project was flooded with more than 6,000 observer reports from over 55 countries and all seven continents.

Photographers helped scientists understand why auroras observed throughout Japan were magenta rather than the typical red. Researchers studied hundreds of photos and found the auroras were surprisingly high — around 600 miles above the ground (200 miles higher than red auroras typically appear).

A torii gate stands by the shore with a small hill in the background, under a night sky filled with stars, a bright moon, and vivid purple and pink auroras.
In Japan, where it’s typical to see red auroras, numerous skywatchers captured photos of unusual magenta auroras instead. With the help of hundreds of photos like this one shared via social media, researchers found the magenta auroras were exceptionally high — around 600 miles above the ground (compared to a typical maximum height of 400 miles for red auroras, which are usually the highest).
KAGAYA

In a paper published in the journal Scientific Reports, the research team says the peculiar color likely resulted from a mix of red and blue auroras, produced by oxygen and nitrogen molecules lofted higher than usual as the Gannon storm heated and expanded the upper atmosphere.

“It typically needs some special circumstances, like we saw last May,” co-author Josh Pettit of NASA’s Goddard Space Flight Center said of Japan’s magenta auroras. “A very unique event indeed.”

Otherworldly Effects

Impacts of the Sun’s amped-up solar activity didn’t end at Earth. The solar active region that sparked the Gannon storm eventually rotated away from our planet and redirected its outbursts toward Mars.

As energetic particles from the Sun struck the Martian atmosphere, NASA’s MAVEN (Mars Atmosphere and Volatile Evolution) orbiter watched auroras engulf the Red Planet from May 14 to 20.

An animated gif of Mars, appearing in grayscale, with a pixellated pattern of purple and white lights shimmering on the left half of the planet, indicating auroras detected by NASA's MAVEN spacecraft.
The purple color in this animated GIF shows auroras across Mars’ nightside as detected by the Imaging Ultraviolet Spectrograph instrument aboard NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiter. The brighter the purple, the more auroras were present. MAVEN took these images between May 14 and 20, 2024, as energetic particles from a solar storm were arriving at Mars. The sequence pauses at the end, when the most energetic particles arrived and overwhelmed the instrument with noise. MAVEN made the observations as it orbited below Mars, looking up at the nightside of the planet. (Mars’ south pole can be seen on the right, in full sunlight.)
NASA/University of Colorado/LASP

Solar particles overwhelmed the star camera on NASA’s 2001 Mars Odyssey orbiter (which uses stars to orient the spacecraft), causing the camera to cut out for almost an hour.

On the Martian surface, images from the navigation cameras on NASA’s Curiosity rover were freckled with “snow” — streaks and specks caused by charged particles. Meanwhile, Curiosity’s Radiation Assessment Detector recorded the biggest surge of radiation since the rover landed in 2012. If astronauts had been there, they would have received a radiation dose of 8,100 micrograys — equivalent to 30 chest X-rays.

A black-and-white photo of a rocky Martian landscape, featuring a large sloped hill with visible layers on the right and a smaller peak in the distance under a hazy sky. Specks of white appear to dot the image from time to time, a response to solar energetic particles from the Sun hitting the camera.
The specks in this image sequence were caused by charged particles from the Sun hitting one of the navigation cameras aboard NASA’s Curiosity Mars rover on May 20, 2024. The sequence also shows the effects of a wind gust that happened to occur at the same time on the Martian surface.
NASA/JPL-Caltech

Still More to Come

The Gannon storm spread auroras to unusually low latitudes and has been called the best-documented geomagnetic storm in history. A year on, we have just begun unraveling its story. Data captured during this historic event will be analyzed for years to come, revealing new lessons about the nature of geomagnetic storms and how best to weather them.

By Mara Johnson-Groh, Miles Hatfield, and Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In the summer 2025 issue of the NASA History Office’s News & Notes newsletter, examples of leadership and critical decision-making in NASA’s history form the unifying theme. Among the topics discussed are NASA’s Shuttle-Centaur program, assessing donations to the NASA Archives, how the discovery of the first exoplanet orbiting a sun-like star catalyzed NASA’s exoplanet program, and Chief of the Medical Operations Office Charles A. Berry’s decisions surrounding crew health when planning the Project Gemini missions.

      Volume 42, Number 2
      Summer 2025
      Featured Articles
      From the Chief Historian
      By Brian Odom
      NASA’s is a history marked by critical decisions. From George Mueller’s 1963 decision for “all up” testing of the Saturn V rocket to Michael Griffin’s 2006 decision to launch a final servicing mission to the Hubble Space Telescope, the agency has continually met key inflection points with bold decisions. These choices, such as the decision to send a crewed Apollo 8 mission around the Moon in December 1968, stand at the center of the agency’s national legacy and promote confidence in times of crisis.  Continue Reading
      Shuttle-Centaur: Loss of Launch Vehicle Redundancy Leads to Discord
      By Robert Arrighi
      “Although the Shuttle/Centaur decision was very difficult to make, it is the proper thing to do, and this is the time to do it.” With those words on June 19, 1986, NASA Administrator James Fletcher canceled the intensive effort to integrate the Centaur upper stage with the Space Shuttle to launch the Galileo and Ulysses spacecraft. The decision, which was tied to increased safety measures following the loss of Challenger several months earlier, brought to the forefront the 1970s decision to launch all U.S. payloads with the Space Shuttle. Continue Reading
      Lewis Director Andy Stofan speaks at the Shuttle-Centaur rollout ceremony on August 23, 1985 at General Dynamics’s San Diego headquarters. Galileo mission crew members Dave Walker, Rick Hauck, and John Fabian were among those on stage. NASA A View into NASA’s Response to the Apollo 1 Tragedy
      By Kate Mankowski
      On January 27, 1967, Mission AS-204 (later known as Apollo 1) was conducting a simulated countdown when a fire suddenly broke out in the spacecraft, claiming the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. The disaster highlighted the risks that come with spaceflight and the work that still needed to be accomplished to meet President Kennedy’s challenge of going to the Moon before the end of the decade. With the complexity of the Apollo spacecraft, discerning the cause of the fire proved to be incredibly difficult. Continue Reading
      The Fight to Fund AgRISTARS
      By Brad Massey
      Robert MacDonald, the manager of NASA’s Large Area Crop Inventory Experiment (LACIE), was not pleased in January 1978 after he read a draft copy of the U.S. General Accounting Office’s (GAO’s) “Crop Forecasting by Satellite: Progress and Problems” report. The draft’s authors argued that LACIE had not achieved its goals of accurately predicting harvest yields in the mid-1970s. Therefore, congressional leaders should “be aware of the disappointing performance of LACIE to date when considering the future direction of NASA’s Landsat program and the plans of the Department of Agriculture.” Continue Reading
      The Hubble Space Telescope: The Right Project at the Right Time
      By Jillian Rael
      This year, NASA commemorates 35 years of the Hubble Space Telescope’s study of the cosmos. From observations of never-before-seen phenomena within our solar system, to the discovery of distant galaxies, the confirmation of the existence of supermassive black holes, and precision measurements of the universe’s expansion, Hubble has made incredible contributions to science, technology, and even art. Yet, for all its contemporary popularity, the Hubble program initially struggled for congressional approval and consequential funding. For its part, NASA found new ways to compromise and cut costs, while Congress evaluated national priorities and NASA’s other space exploration endeavors against the long-range value of Hubble. Continue Reading
      Within the tempestuous Carina Nebula lies “Mystic Mountain.”NASA/ESA/M. Livio/Hubble 20th Anniversary Team Appraisal: The Science and Art of Assessing Donations to the NASA Archives
      By Alan Arellano
      The major functions of an archivist center include appraising, arranging, describing, preserving, and providing access to historical records and documents. While together these are pillars of archival science, they are more of an art than a science in their application, fundamentally necessitating skilled decision making. Throughout the NASA archives, staff members make these decisions day in and day out. Continue Reading
      Orbit Shift: How 50 Pegasi b Helped Pull NASA Toward the Stars in the 1990s
      By Lois Rosson
      On October 20, 1995, the New York Times reported the detection of a distant planet orbiting a Sun-like star. The star, catalogued as 51 Pegasi by John Flamsteed in the 18th century, was visible to the naked eye as part of the constellation Pegasus—and had wobbled on its axis just enough that two Swiss astronomers were able to deduce the presence of another object exerting its gravitational pull on the star’s rotation. The discovery was soon confirmed by other astronomers, and 51 Pegasi b was heralded as the first confirmed exoplanet orbiting a star similar to our own Sun. Continue Reading
      Detail from an infographic about 51 Pegasi b and the significance of its discovery.NASA Four, Eight, Fourteen Days: Charles A. Berry, Gemini, and the Critical Steps to Living and Working in Space
      By Jennifer Ross-Nazzal
      In 1963, critical decisions had to be made about NASA’s upcoming Gemini missions if the nation were to achieve President John F. Kennedy’s lunar goals. Known as the bridge to Apollo, Project Gemini was critical to landing a man on the Moon by the end of the decade and returning him safely to Earth. The project would demonstrate that astronauts could rendezvous and dock their spacecraft to another space vehicle and give flight crews the opportunity to test the planned extravehicular capabilities in preparation for walking on the lunar surface on future Apollo flights. Perhaps most importantly, Gemini had to show that humans could live and work in space for long periods of time, a fiercely debated topic within and outside of the agency.  Continue Reading
      Dr. Charles Berry prepares to check the blood pressure of James A. McDivitt, Command Pilot for the Gemini IV mission. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, FL, where he and Gemini IV pilot Edward H. White II underwent preflight physicals in preparation for their four-day spaceflight.NASA Imagining Space: The Life and Art of Robert McCall
      By Sandra Johnson
      As we walked into Bob McCall’s Arizona home, it quickly became obvious that two talented and creative people lived there. Tasked with interviewing one of the first artists to be invited to join the NASA Art Program, our oral history team quickly realized the session with McCall would include a unique perspective on NASA’s history. We traveled to Arizona in the spring of 2000 to capture interviews with some of the pioneers of spaceflight and had already talked to an eclectic group of subjects in their homes, including a flight controller for both Gemini and Apollo, an astronaut who had flown on both Skylab and Space Shuttle missions, a former NASA center director, and two former Women’s Airforce Service Pilots (WASPs) who ferried airplanes during WWII. However, unlike most interviews, the setting itself provided a rare glimpse into the man and his inspiration.  Continue Reading
      Inside the Archives: Biomedical Branch Files
      By Alejandra Lopez
      The Biomedical Branch Files (1966–2008) in the Johnson Space Center archives showcase the inner workings of a NASA office established to perform testing to provide a better understanding of the impacts of spaceflight on the human body. Ranging from memos and notes to documents and reports, this collection is an invaluable resource on the biomedical research done with NASA’s Apollo, Skylab, Space Shuttle, and Space Station projects. Files in the collection cover work done by groups within the branch such as the Toxicology, Microbiology, Clinical, and Biochemistry Laboratories. It also reveals the branch’s evolution and changes in its decision-making process over the years. Continue Reading
      Dr. Carolyn S. Huntoon, shown here in 1972, became the Biomedical Branch’s first chief in 1977.NASA Download the Summer 2025 Edition More Issues of NASA History News and Notes Share
      Details
      Last Updated Jun 20, 2025 EditorMichele Ostovar Related Terms
      NASA History Newsletters Explore More
      5 min read NASA History News and Notes–Spring 2025
      Article 3 months ago 6 min read NASA History News and Notes – Winter 2024
      Article 6 months ago 7 min read NASA History News and Notes – Fall 2024
      Article 9 months ago Keep Exploring Discover Related Topics
      NASA History
      History Publications and Resources
      NASA Archives
      NASA Oral Histories
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From Sunday, June 22 to Wednesday, July 2, two research aircraft will make a series of low-altitude atmospheric research flights near Philadelphia, Baltimore, and some Virginia cities, including Richmond, as well as over the Los Angeles Basin, Salton Sea, and Central Valley in California.
      NASA’s P-3 Orion aircraft, based out of the agency’s Wallops Flight Facility in Virginia, along with Dynamic Aviation’s King Air B200 aircraft, will fly over parts of the East and West coasts during the agency’s Student Airborne Research Program. The science flights will be conducted between June 22 and July 2, 2025. NASA/Garon Clark Pilots will operate the aircraft at altitudes lower than typical commercial flights, executing specialized maneuvers such as vertical spirals between 1,000 and 10,000 feet, circling above power plants, landfills, and urban areas. The flights will also include occasional missed approaches at local airports and low-altitude flybys along runways to collect air samples near the surface.
      The East Coast flights will be conducted between June 22 and Thursday, June 26 over Baltimore and near Philadelphia, as well as near the Virginia cities of Hampton, Hopewell, and Richmond. The California flights will occur from Sunday, June 29 to July 2.
      The flights, part of NASA’s Student Airborne Research Program (SARP), will involve the agency’s Airborne Science Program’s P-3 Orion aircraft (N426NA) and a King Air B200 aircraft (N46L) owned by Dynamic Aviation and contracted by NASA. The program is an eight-week summer internship program that provides undergraduate students with hands-on experience in every aspect of a scientific campaign.
      The P-3, operated out of NASA’s Wallops Flight Facility in Virginia, is a four-engine turboprop aircraft outfitted with a six-instrument science payload to support a combined 40 hours of SARP science flights on each U.S. coast. The King Air B200 will fly at the same time as the P-3 but in an independent flight profile. Students will assist in the operation of the science instruments on the aircraft to collect atmospheric data.
      “The SARP flights have become mainstays of NASA’s Airborne Science Program, as they expose highly competitive STEM students to real-world data gathering within a dynamic flight environment,” said Brian Bernth, chief of flight operations at NASA Wallops.
      “Despite SARP being a learning experience for both the students and mentors alike, our P-3 is being flown and performing maneuvers in some of most complex and restricted airspace in the country,” said Bernth. “Tight coordination and crew resource management is needed to ensure that these flights are executed with precision but also safely.”
      For more information about Student Airborne Research Program, visit:
      https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Jun 20, 2025 Related Terms
      Airborne Science Aeronautics Wallops Flight Facility View the full article
    • By European Space Agency
      ESA Delivers: 50 years booklet
      50 hallmark achievements across 50 years
      View the full article
    • By NASA
      NASA astronauts (left to right) Anne McClain and Nichole Ayers pose for a portrait together aboard the International Space Station. Moments earlier, Ayers finished trimming McClain’s hair using an electric razor with a suction hose attached that collects the loose hair to protect the station’s atmosphere.NASA Students from New York and Utah will hear from NASA astronauts aboard the International Space Station as they answer prerecorded questions in two separate events.
      At 11:30 a.m. EDT on Monday, June 23, NASA astronauts Nichole Ayers and Anne McClain will answer questions submitted by students from P.S. 71 Forest Elementary School in Ridgewood, New York. Media interested in covering the event must RSVP by 5 p.m. Friday, June 20, to Regina Beshay at: rbeshay2@school.nyc.gov or 347-740-6165.
      At 11:05 a.m. on Friday, June 27, Ayers and McClain will answer questions submitted by students from Douglas Space and Science Foundation, Inc., in Layton, Utah. Media interested in covering the event must RSVP by 5 p.m. Wednesday, June 25, to Sarah Merrill at: sarahmonique@gmail.com or 805-743-3341.
      Watch the 20-minute Earth-to-space calls on NASA STEM YouTube Channel.
      P.S. 71 Forest Elementary School will host kindergarten through fifth grade students. Douglas Space and Science Foundation will host participants from the Science, Technology, Achievement Research camp. Both events aim to inspire students to imagine a future in science, technology, engineering, and mathematics careers through ongoing collaborations, mentorship, and hands-on learning experiences.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 18, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      4 Min Read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      During the September 2023 daytime reentry of the OSIRIS-REx sample return capsule, the SCIFLI team captured visual data similar to what they're aiming to capture during Mission Possible. Credits: NASA/SCIFLI A NASA team specializing in collecting imagery-based engineering datasets from spacecraft during launch and reentry is supporting a European aerospace company’s upcoming mission to return a subscale demonstration capsule from space.
      NASA’s Scientifically Calibrated In-Flight Imagery (SCIFLI) team supports a broad range of mission needs across the agency, including Artemis, science missions like OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), and NASA’s Commercial Crew Program. The SCIFLI team also supports other commercial space efforts, helping to develop and strengthen public-private partnerships as NASA works to advance exploration, further cooperation, and open space to more science, people, and opportunities.

      Later this month, SCIFLI intends to gather data on The Exploration Company’s Mission Possible capsule as it returns to Earth following the launch on a SpaceX Falcon 9 rocket. One of the key instruments SCIFLI will employ is a spectrometer detects light radiating from the capsule’s surface, which researchers can use to determine the surface temperature of the spacecraft. Traditionally, much of this data comes from advanced Computational Fluid Dynamics modeling of what happens when objects of various sizes, shapes, and materials enter different atmospheres, such as those on Earth, Mars, or Venus.
      “While very powerful, there is still some uncertainty in these Computational Fluid Dynamics models. Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets,” said Carey Scott, SCIFLI capability lead at NASA’s Langley Research Center in Hampton, Virginia.
      A rendering of a space capsule from The Exploration Company re-entering Earth’s atmosphere.
      Image courtesy of The Exploration CompanyThe Exploration Company The SCIFLI team will be staged in Hawaii and will fly aboard an agency Gulfstream III aircraft during the re-entry of Mission Possible over the Pacific Ocean.
      “The data will provide The Exploration Company with a little bit of redundancy and a different perspective — a decoupled data package, if you will — from their onboard sensors,” said Scott.
      From the Gulfstream, SCIFLI will have the spectrometer and an ultra-high-definition telescope trained on Mission Possible. The observation may be challenging since the team will be tracking the capsule against the bright daytime sky. Researchers expect to be able to acquire the capsule shortly after entry interface, the point at roughly 200,000 feet, where the atmosphere becomes thick enough to begin interacting with a capsule, producing compressive effects such as heating, a shock layer, and the emission of photons, or light.
      Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets.
      Carey Scott
      SCIFLI Capability Lead

      In addition to spectrometer data on Mission Possible’s thermal protection system, SCIFLI will capture imagery of the parachute system opening. First, a small drogue chute deploys to slow the capsule from supersonic to subsonic, followed by the deployment of a main parachute. Lastly, cloud-cover permitting, the team plans to image splashdown in the Pacific, which will help a recovery vessel reach the capsule as quickly as possible.
      If flying over the ocean and capturing imagery of a small capsule as it zips through the atmosphere during the day sounds difficult, it is. But this mission, like all SCIFLI’s assignments, has been carefully modeled, choreographed, and rehearsed in the months and weeks leading up to the mission. There will even be a full-dress rehearsal in the days just before launch.
      Not that there aren’t always a few anxious moments right as the entry interface is imminent and the team is looking out for its target. According to Scott, once the target is acquired, the SCIFLI team has its procedures nailed down to a — pardon the pun — science.
      “We rehearse, and we rehearse, and we rehearse until it’s almost memorized,” he said.
      Ari Haven, left, asset coodinator for SCIFLI’s support of Mission Possible, and Carey Scott, principal engineer for the mission, in front of the G-III aircraft the team will fly on.
      Credit: NASA/Carey ScottNASA/Carey Scott The Exploration Company, headquartered in Munich, Germany, and Bordeaux,
      France, enlisted NASA’s support through a reimbursable Space Act Agreement and will use SCIFLI data to advance future capsule designs.
      “Working with NASA on this mission has been a real highlight for our team. It shows what’s possible when people from different parts of the world come together with a shared goal,” said Najwa Naimy, chief program officer at The Exploration Company. “What the SCIFLI team is doing to spot and track our capsule in broad daylight, over the open ocean, is incredibly impressive. We’re learning from each other, building trust, and making real progress together.”
      NASA Langley is known for its expertise in engineering, characterizing, and developing spacecraft systems for entry, descent, and landing. The Gulfstream III aircraft is operated by the Flight Operations Directorate at NASA’s Armstrong Flight Research Center in Edwards, California.
      Share
      Details
      Last Updated Jun 18, 2025 EditorJoe AtkinsonContactJoe Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      Langley Research Center General Space Operations Mission Directorate Explore More
      4 min read Career Exploration: Using Ingenuity and Innovation to Create ‘Memory Metals’
      Article 20 hours ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 23 hours ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...