Members Can Post Anonymously On This Site
Starship | Seventh Flight Test
-
Similar Topics
-
By NASA
As part of NASA’s Advanced Capabilities for Emergency Response Operations flight tests in November 2024, Overwatch Aero flies a vertical takeoff and landing aircraft in Watsonville, California.Credit: NASA NASA will conduct a live flight test of aircraft performing simulated wildland fire response operations using a newly developed airspace management system at 9 a.m. PDT on Tuesday, March 25, in Salinas, California.
NASA’s new portable airspace management system, part of the agency’s Advanced Capabilities for Emergency Response Operations (ACERO) project, aims to significantly expand the window of time crews have to respond to wildland fires. The system provides the air traffic awareness needed to safely send aircraft – including drones and remotely piloted helicopters – into wildland fire operations, even during low-visibility conditions. Current aerial firefighting operations are limited to times when pilots have clear visibility, which lowers the risk of flying into the surrounding terrain or colliding with other aircraft. This restriction grounds most aircraft at night and during periods of heavy smoke.
During this inaugural flight test, researchers will use the airspace management system to coordinate the flight operations of two small drones, an electric vertical takeoff and landing aircraft, and a remotely piloted aircraft that will have a backup pilot aboard. The drones and aircraft will execute examples of critical tasks for wildland fire management, including weather data sharing, simulated aerial ignition flights, and communications relay.
Media interested in viewing the ACERO flight testing must RSVP by 4 p.m. Friday, March 21, to the NASA Ames Office of Communications by email at: arc-dl-newsroom@mail.nasa.gov or by phone at 650-604-4789. NASA will release additional details, including address and arrival logistics, to media credentialed for the event. A copy of NASA’s media accreditation policy is online.
NASA’s ACERO researchers will use data from the flight test to refine the airspace management system. The project aims to eventually provide this technology to wildland fire crews for use in the field, helping to save lives and property. This project is managed at NASA’s Ames Research Center in California’s Silicon Valley.
For more information on ACERO, visit:
https://go.nasa.gov/4bYEzsD
-end-
Rob Margetta
Headquarters, Washington
202-358-1600
robert.j.margetta@nasa.gov
Hillary Smith
Ames Research Center, Silicon Valley
650-604-4789
hillary.smith@nasa.gov
Share
Details
Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Ames Research Center Advanced Capabilities for Emergency Response Operations Aeronautics Aeronautics Research Mission Directorate Flight Innovation View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A super pressure balloon with the EUSO-2 payload is prepared for launch from Wānaka, New Zealand, during NASA’s campaign in 2023.NASA/Bill Rodman NASA’s Scientific Balloon Program has returned to Wānaka, New Zealand, for two scheduled flights to test and qualify the agency’s super pressure balloon technology. These stadium-sized, heavy-lift balloons will travel the Southern Hemisphere’s mid-latitudes for planned missions of 100 days or more.
Launch operations are scheduled to begin in late March from Wānaka Airport, NASA’s dedicated launch site for mid-latitude, ultra long-duration balloon missions.
“We are very excited to return to New Zealand for this campaign to officially flight qualify the balloon vehicle for future science investigations,” said Gabriel Garde, chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “Our dedicated team both in the field and at home has spent years in preparation for this opportunity, and it has been through their hard work, fortitude, and passion that we are back and fully ready for the upcoming campaign.”
While the primary flight objective is to test and qualify the super pressure balloon technology, the flights will also host science missions and technology demonstrations. The High-altitude Interferometer Wind Observation (HIWIND), led by High Altitude Observatory, National Center for Atmospheric Research in Boulder, Colorado, will fly as a mission of opportunity on the first flight. The HIWIND payload will measure neutral wind in the part of Earth’s atmosphere called the thermosphere. Understanding these winds will help scientists predict changes in the ionosphere, which can affect communication and navigation systems. The second flight will support several piggyback missions of opportunity, or smaller payloads, including:
Compact Multichannel Imaging Camera (CoMIC), led by University of Massachusetts Lowell, will study and measure how Earth’s atmosphere scatters light at high altitudes and will measure airglow, specifically the red and green emissions. High-altitude Infrasound from Geophysical Sources (HIGS), led by NASA’s Jet Propulsion Laboratory and Sandia National Laboratories, will measure atmospheric pressure to collect signals of geophysical events on Earth such as earthquakes and volcanic eruptions. These signals will help NASA as it develops the ability to measure seismic activity on Venus from high-altitude balloons. Measuring Ocean Acoustics North of Antarctica (MOANA), led by Sandia National Laboratories and Swedish Institute of Space Physics, aims to capture sound waves in Earth’s stratosphere with frequencies below the limit of human hearing. NASA’s Balloon Program Office at the agency’s Wallops Flight Facility is leading two technology demonstrations on the flight. The INterim Dynamics Instrumentation for Gondolas (INDIGO) is a data recorder meant to measure the shock of the gondola during the launch, termination, and landing phases of flight. The Sensor Package for Attitude, Rotation, and Relative Observable Winds – 7 (SPARROW-7), will demonstrate relative wind measurements using an ultrasonic device designed for the balloon float environment that measures wind speed and direction. NASA’s 18.8-million-cubic-foot (532,000-cubic-meter) helium-filled super pressure balloon, when fully inflated, is roughly the size of Forsyth-Barr Stadium in Dunedin, New Zealand, which has a seating capacity of more than 35,000. The balloon will float at an altitude of around 110,000 feet (33.5 kilometers), more than twice the altitude of a commercial airplane. Its flight path is determined by the speed and direction of wind at its float altitude.
The balloon is a closed system design to prevent gas release. It offers greater stability at float altitude with minimum altitude fluctuations during the day to night cycle compared to a zero pressure balloon. This capability will enable future missions to affordably access the near-space environment for long-duration science and technology research from the Southern Hemisphere’s mid-latitudes, including nighttime observations.
The public is encouraged to follow real-time tracking of the balloons’ paths as they circle the globe on the agency’s Columbia Scientific Balloon Facility website. Launch and tracking information will be shared across NASA’s social media platforms and the NASA Wallops blog.
NASA’s return to Wānaka marks the sixth super pressure balloon campaign held in New Zealand since the agency began balloon operations there in 2015. The launches are conducted in collaboration with the Queenstown Airport Corporation, Queenstown Lake District Council, New Zealand Space Agency, and Airways New Zealand.
“We are especially grateful to our local hosts, partners, and collaborators who have been with us from the beginning and are critical to the success of these missions and this campaign,” said Garde.
NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 16 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, sustaining engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division.
For more information on NASA’s Scientific Balloon Program, visit:
www.nasa.gov/scientificballoons.
By Olivia Littleton
NASA’s Wallops Flight Facility, Wallops Island, Va.
Share
Details
Last Updated Mar 14, 2025 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.govLocationWallops Flight Facility Related Terms
Scientific Balloons Astrophysics Astrophysics Division Goddard Space Flight Center Wallops Flight Facility Explore More
7 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
Article 3 months ago 7 min read NASA to Launch 8 Scientific Balloons From New Mexico
Article 7 months ago 5 min read NASA’s EXCITE Mission Prepared for Scientific Balloon Flight
Editor’s note: EXCITE successfully launched at 9:22 a.m. EDT (7:22 a.m. MDT) Saturday, Aug. 31.…
Article 7 months ago View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA / Lillian Gipson NASA has selected three university teams to help solve 21st century aviation challenges that could transform the skies above our communities.
As part of NASA’s University Leadership Initiative (ULI), both graduate and undergraduate students on faculty-led university teams will contribute directly to real-world flight research while gaining hands-on experience working with partners from other universities and industry.
By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation.
koushik datta
NASA Project Manager
This is NASA’s eighth round of annual ULI awards. Research topics include:
New aviation systems for safer, more efficient flight operations Improved communications frequency usage for more effective and reliable information transfer Autonomous flight capabilities that could advance research in areas such as NASA’s Advanced Air Mobility mission “By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation,” said Koushik Datta, NASA University Innovation project manager at the Agency’s Ames Research Center in California.
This eighth round of annual ULI selections would lead to awards totaling up to $20.7 million for the three teams during the next three years. For each team, the proposing university will serve as lead. The new ULI selections are:
Florida Institute of Technology, Melbourne, Florida
The team will create a framework for developing trustworthy increasingly autonomous aviation safety systems, such as those that could potentially employ artificial intelligence and machine learning.
Team members include: The Pennsylvania State University in University Park; North Carolina Agricultural and Technical State University in Greensboro; University of Florida in Gainesville; Stanford University in California; Santa Fe Community College in New Mexico; and the companies Collins Aerospace of Charlotte in North Carolina; and ResilienX of Syracuse, New York.
University of Colorado Boulder
This team will investigate tools for understanding and leveraging the complex communications environment of collaborative, autonomous airspace systems.
Team members include: Massachusetts Institute of Technology in Cambridge; The University of Texas at El Paso; University of Colorado in Colorado Springs; Stanford University in California; University of Minnesota Twin Cities in Minneapolis, North Carolina State University in Raleigh; University of California inSanta Barbara; El Paso Community College in Texas; Durham Technical Community College in North Carolina; the Center for Autonomous Air Mobility and Sensing research partnership; the company Aurora Flight Sciences, a Boeing Company, in Manassas, Virginia; and the nonprofit Charles Stark Draper Laboratory in Cambridge, Massachusetts.
Embry-Riddle Aeronautical University, Daytona Beach, Florida
This team will research continuously updating, self-diagnostic vehicle health management to enhance the safety and reliability of Advanced Air Mobility vehicles.
Team members include: Georgia Institute of Technology in Atlanta; The University of Texas at Arlington; University of Southern California in Los Angeles; the company Collins Aerospace of Charlotte, North Carolina; and the Argonne National Laboratory.
NASA’s ULI is managed by the agency’s University Innovation project, which also includes the University Student Research Challenge and the Gateways to Blue Skies competition.
Watch the NASA Aeronautics solicitations page for the announcement of when the next opportunity will be to submit a proposal for consideration during the next round of ULI selections.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
Article 2 weeks ago 4 min read NASA University Research Program Makes First Award to a Community College Project
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Mar 10, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
University Leadership Initiative Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
-
By Space Force
The Space Force landed the X-37B at Vandenberg Space Force Base, California, to exercise its rapid ability to launch and recover its systems across multiple sites. X-37B’s Mission 7 was the first launch on a SpaceX Falcon Heavy Rocket to a Highly Elliptical Orbit.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.