Members Can Post Anonymously On This Site
Five Facts About NASA’s Moon Bound Technology
-
Similar Topics
-
By NASA
Artemis II crew members and U.S. Navy personnel practice recovery procedures in the Pacific Ocean using a test version of NASA’s Orion spacecraft in February 2024. Credit: NASA NASA and the Department of Defense will host a media event on the recovery operations that will bring the Artemis II astronauts and the agency’s Orion spacecraft home at the conclusion of next year’s mission around the Moon. The in-person event will take place at 3 p.m. PDT on Monday, March 31, at Naval Base San Diego in California.
A team of NASA and Department of Defense personnel are at sea in the Pacific Ocean where splashdown will take place. The team currently is practicing the procedures it will use to recover the astronauts after their more than 600,000 mile journey from Earth and back on the first crewed mission under the Artemis campaign. A test version of Orion and other hardware also will be on-hand for media representatives to view.
Interested media must RSVP no later than 4 p.m. PDT Friday, March 28, to Naval Base San Diego Public Affairs at nbsd.pao@us.navy.mil or 619-556-7359. The start time of the event may change based on the conclusion of testing activities.
Participants include:
Liliana Villarreal, NASA’s Artemis II landing and recovery director, Exploration Ground Systems Program, NASA’s Kennedy Space Center in Florida Capt. Andrew “Andy” Koy, commanding officer of USS Somerset (LPD 25), U.S. Navy Lt. Col. David Mahan, commander, U.S. Air Force’s 1st Air Force, Detachment 3, Patrick Space Force Base, Florida Several astronauts participating in the testing will be available for interviews.
Artemis II will be the first test flight of the SLS (Space Launch System) rocket, Orion spacecraft, and supporting ground system with crew aboard. NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Learn more about Artemis II at:
https://www.nasa.gov/mission/artemis-ii/
-end-
Jim Wilson
Headquarters, Washington
202-358-1100
jim.wilson@nasa.gov
Madison Tuttle/Allison Tankersley
Kennedy Space Center, Florida
321-298-5968/321-867-2468
madison.e.tuttle@nasa.gov / allison.p.tankersley@nasa.gov
Share
Details
Last Updated Mar 25, 2025 LocationNASA Headquarters Related Terms
Artemis 2 Kennedy Space Center NASA Headquarters View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Firefly Aerospace’s Blue Ghost Mission 1 lunar lander on the Moon’s surface the afternoon of March 2, not quite 10 hours after the spacecraft landed.
Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, which appears in this image from NASA’s Lunar Reconnaissance Orbiter as a bright pixel casting a shadow in the middle of the white box, reached the surface of the Moon on March 2 at 3:34 a.m. EST.NASA/Goddard/Arizona State University The delivery is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. This is the first CLPS delivery for Firefly, and their first Moon landing.
LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 25, 2025 Related Terms
Lunar Reconnaissance Orbiter (LRO) View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Intuitive Machines’ IM-2 on the Moon’s surface on March 7, just under 24 hours after the spacecraft landed.
Later that day Intuitive Machines called an early end of mission for IM-2, which carried NASA technology demonstrations as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.
The Intuitive Machines IM-2 Athena lander, indicated here with a white arrow, reached the surface of the Moon on March 6, 2025, near the center of Mons Mouton. NASA’s Lunar Reconnaissance Orbiter (LRO) imaged the site at 12:54 p.m. EST on March 7.NASA/Goddard/Arizona State University The IM-2 mission lander is located closer to the Moon’s South Pole than any previous lunar lander.
LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 25, 2025 Related Terms
Lunar Reconnaissance Orbiter (LRO) View the full article
-
By NASA
NASA’s Acting Associate Administrator for NASA’s Exploration Systems Development Mission Directorate Lori Glaze, right, and NASA Langley Acting Center Director Trina Dyal spoke at a dedication ceremony for NASA Langley’s Artemis Moon Tree at the center March 12.NASA/Ryan Hill A tree that sprouted from a seed that journeyed around the Moon and back is growing at NASA’s Langley Research Center in Hampton, Virginia.
NASA’s Acting Associate Administrator for NASA’s Exploration Systems Development Mission Directorate Lori Glaze and NASA Langley Acting Center Director Trina Dyal spoke at a dedication ceremony for the Artemis Moon Tree, a loblolly pine, at the center March 12.
“I wanted to quote an old Greek proverb that more or less says something like, ‘Society grows when its elders plant trees whose shade they know they shall never sit in,’ ” said Glaze. “I love that. We always talk about how we stand on the shoulders of giants. Those giants planted seeds, and we are still benefiting from the tremendous roots of those trees,”
The young tree, only about two feet tall right now, is growing in an area between NASA Langley’s Integrated Engineering Services Building and its Measurement Systems Laboratory. The pine is surrounded by a wire plant protector. A yellow label identifies the species and the location of the U.S. Department of Agriculture Forest Services nursery where the seedling was grown — Charles E. Bessey Nursery in Halsey, Nebraska. A small plaque marks its status as a Moon Tree.
“This, we plant here for all future generations to be inspired and to continue on the amazing legacy of what we’re doing,” said Glaze. “Our return to the lunar surface and our journey to Mars through the Artemis campaign is really going to lay the foundation for that future of exploration that right now we’re only dreaming about. With your help, through Langley and the rest of our NASA colleagues and partners, we’re going to achieve those visions.”
NASA Langley’s Artemis Moon Tree is a loblolly pine.NASA/Ryan Hill The loblolly seed was one of many that flew on the Artemis I mission Nov. 16 to Dec. 11, 2022 — journeying 270,000 miles from Earth aboard the Orion spacecraft. NASA’s Office of STEM Engagement partnered with the Forest Services to fly the seeds aboard Artemis I as part of a national STEM Engagement and conservation education initiative.
In addition to loblolly pines, tree species on the flight included sycamores, sweetgums, Douglas firs, and giant sequoias. The Forest Services germinated the seeds.
Locally, NASA Langley’s loblolly pine is one of three Artemis Moon Trees. The Virginia Living Museum in Newport News and the Virginia Zoo in Norfolk were also selected as Moon Tree stewards, and also received loblolly pines.
The Artemis Moon Trees take inspiration from their Apollo precursors. In 1971, NASA astronaut Stuart Roosa, the command module pilot for the Apollo 14 mission and a former U.S. Department of Agriculture Forest Services smoke jumper, carried tree seeds into lunar orbit. The Apollo 14 Moon Trees were disseminated to national monuments and dignitaries around the world, with a large number distributed as part of the nation’s bicentennial event.
One of those Moon Trees, a sycamore, was planted at Albert W. Patrick III Elementary School in the Fox Hill area of Hampton in 1976. Sixth grader Marjorie White wrote a poem called “A Tree Lives” that won a contest to earn the honor.
View the full article
-
By NASA
After delivering ten NASA science and technology payloads to the near side of the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 lander captured this image of a sunset from the lunar surface. Credit: Firefly Aerospace After landing on the Moon with NASA science and technology demonstrations March 2, Firefly Aerospace’s Blue Ghost Mission 1 concluded its mission March 16. Analysis of data returned to Earth from the NASA instruments continues, benefitting future lunar missions.
As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly’s Blue Ghost lunar lander delivered 10 NASA science and technology instruments to the Mare Crisium basin on the near side of the Moon. During the mission, Blue Ghost captured several images and videos, including imaging a total solar eclipse and a sunset from the surface of the Moon. The mission lasted for about 14 days, or the equivalent of one lunar day, and multiple hours into the lunar night before coming to an end.
“Firefly’s Blue Ghost Mission 1 marks the longest surface duration commercial mission on the Moon to date, collecting extraordinary science data that will benefit humanity for decades to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With NASA’s CLPS initiative, American companies are now at the forefront of an emerging lunar economy that lights the way for the agency’s exploration goals on the Moon and beyond.”
All 10 NASA payloads successfully activated, collected data, and performed operations on the Moon. Throughout the mission, Blue Ghost transmitted 119 gigabytes of data back to Earth, including 51 gigabytes of science and technology data. In addition, all payloads were afforded additional opportunities to conduct science and gather more data for analysis, including during the eclipse and lunar sunset.
“Operating on the Moon is complex; carrying 10 payloads, more than has ever flown on a CLPS delivery before, makes the mission that much more impressive,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “Teams are eagerly analyzing their data, and we are extremely excited for the expected scientific findings that will be gained from this mission.”
Among other achievements, many of the NASA instruments performed first-of-their-kind science and technology demonstrations, including:
The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity is now the deepest robotic planetary subsurface thermal probe, drilling up to 3 feet and providing a first-of-its kind demonstration of robotic thermal measurements at varying depths. The Lunar GNSS Receiver Experiment acquired and tracked Global Navigation Satellite Systems (GNSS) signals, from satellite networks such as GPS and Galileo, for the first time enroute to and on the Moon’s surface. The LuGRE payload’s record-breaking success indicates that GNSS signals could complement other navigation methods and be used to support future Artemis missions. It also acts as a stepping stone to future navigation systems on Mars. The Radiation Tolerant Computer successfully operated in transit through Earth’s Van Allen belts, as well as on the lunar surface into the lunar night, verifying solutions to mitigate radiation effects on computers that could make future missions safer for equipment and more cost effective. The Electrodynamic Dust Shield successfully lifted and removed lunar soil, or regolith, from surfaces using electrodynamic forces, demonstrating a promising solution for dust mitigation on future lunar and interplanetary surface operations. The Lunar Magnetotelluric Sounder successfully deployed five sensors to study the Moon’s interior by measuring electric and magnetic fields. The instrument allows scientists to characterize the interior of the Moon to depths up to 700 miles, or more than half the distance to the Moon’s center. The Lunar Environment heliospheric X-ray Imager captured a series of X-ray images to study the interaction of the solar wind and Earth’s magnetic field, providing insights into how space weather and other cosmic forces surrounding Earth affect the planet. The Next Generation Lunar Retroreflector successfully reflected and returned laser light from two Lunar Laser Ranging Observatories, returning measurements allowing scientists to precisely measure the Moon’s shape and distance from Earth, expanding our understanding of the Moon’s inner structure. The Stereo Cameras for Lunar Plume-Surface Studies instrument captured about 9,000 images during the spacecraft’s lunar descent and touchdown on the Moon, providing insights into the effects engine plumes have on the surface. The payload also operated during the lunar sunset and into the lunar night. The Lunar PlanetVac was deployed on the lander’s surface access arm and successfully collected, transferred, and sorted lunar soil using pressurized nitrogen gas, demonstrating a low-cost, low-mass solution for future robotic sample collection. The Regolith Adherence Characterization instrument examined how lunar regolith sticks to a range of materials exposed to the Moon’s environment, which can help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive lunar dust or regolith. The data captured will benefit humanity in many ways, providing insights into how space weather and other cosmic forces may impact Earth. Establishing an improved awareness of the lunar environment ahead of future crewed missions will help plan for long-duration surface operations under Artemis.
To date, five vendors have been awarded 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the lunar South Pole and far side.
Learn more about NASA’s CLPS initiative at:
https://www.nasa.gov/clps
-end-
Alise Fisher
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov
Share
Details
Last Updated Mar 18, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Blue Ghost (lander) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.