Members Can Post Anonymously On This Site
NASA Names Mary Beth Schwartz as Director, Center Operations Directorate
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The G-IV aircraft flies overhead in the Mojave Desert near NASA’s Armstrong Flight Research Center in Edwards, California. Baseline flights like this one occurred in June 2024, and future flights in service of science research will benefit from the installment of the Soxnav navigational system, developed in collaboration with NASA’s Jet Propulsion Laboratory in Southern California and the Bay Area Environmental Research Institute in California’s Silicon Valley. This navigational system provides precise, economical aircraft guidance for a variety of aircraft types moving at high speeds.NASA/Carla Thomas NASA and its partners recently tested an aircraft guidance system that could help planes maintain a precise course even while flying at high speeds up to 500 mph. The instrument is Soxnav, the culmination of more than 30 years of development of aircraft navigation systems.
NASA’s G-IV aircraft flew its first mission to test this navigational system from NASA’s Armstrong Flight Research Center in Edwards, California, in December 2024. The team was composed of engineers from NASA Armstrong, NASA’s Jet Propulsion Laboratory in Southern California, and the Bay Area Environmental Research Institute (BAERI) in California’s Silicon Valley.
“The objective was to demonstrate this new system can keep a high-speed aircraft within just a few feet of its target track, and to keep it there better than 90% of the time,” said John Sonntag, BAERI independent consultant co-developer of Soxnav.
With 3D automated steering guidance, Soxnav provides pilots with a precision approach aid for landing in poor visibility. Previous generations of navigational systems laid the technical baseline for Soxnav’s modern, compact, and automated iteration.
“The G-IV is currently equipped with a standard autopilot system,” said Joe Piotrowski Jr., operations engineer for the G-IV. “But Soxnav will be able to create the exact level flight required for Next Generation Airborne Synthetic Aperture Radar (AirSAR-NG) mission success.”
Jose “Manny” Rodriguez adjusts the Soxnav instrument onboard the G-IV aircraft in December 2024. As part of the team of experts, Rodriguez ensures that the electronic components of this instrument are installed efficiently. His expertise will help bring the innovative navigational guidance of the Soxnav system to the G-IV and the wider airborne science fleet at NASA. Precision guidance provided by the Soxnav enables research aircraft like the G-IV to collect more accurate, more reliable Earth science data to scientists on the ground.NASA/Steve Freeman Guided by Soxnav, the G-IV may be able to deliver better, more abundant, and less expensive scientific information. For instance, the navigation tool optimizes observations by AirSAR-NG, an instrument that uses three radars simultaneously to observe subtle changes in the Earth’s surface. Together with the Soxnav system, these three radars provide enhanced and more accurate data about Earth science.
“With the data that can be collected from science flights equipped with the Soxnav instrument, NASA can provide the general public with better support for natural disasters, tracking of food and water supplies, as well as general Earth data about how the environment is changing,” Piotrowski said.
Ultimately, this economical flight guidance system is intended to be used by a variety of aircraft types and support a variety of present and future airborne sensors. “The Soxnav system is important for all of NASA’s Airborne Science platforms,” said Fran Becker, project manager for the G-IV AirSAR-NG project at NASA Armstrong. “The intent is for the system to be utilized by any airborne science platform and satisfy each mission’s goals for data collection.”
In conjunction with the other instruments outfitting the fleet of airborne science aircraft, Soxnav facilitates the generation of more abundant and higher quality scientific data about planet Earth. With extreme weather events becoming increasingly common, quality Earth science data can improve our understanding of our home planet to address the challenges we face today, and to prepare for future weather events.
“Soxnav enables better data collection for people who can use that information to safeguard and improve the lives of future generations,” Sonntag said.
Share
Details
Last Updated Feb 07, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Airborne Science Armstrong Flight Research Center B200 Earth Science Jet Propulsion Laboratory Explore More
5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Key Points The largest solar storm in two decades hit Earth in May 2024. For…
Article 24 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
Article 2 days ago 3 min read NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale
Rivers and streams wrap around Earth in complex networks millions of miles long, driving trade,…
Article 3 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Earth Science
Aircraft Flown at Armstrong
Armstrong Science Projects
View the full article
-
By NASA
Credit: NASA The Aerospace Safety Advisory Panel (ASAP), an advisory committee that reports to NASA and Congress, issued its 2024 annual report Thursday examining the agency’s safety performance, accomplishments, and challenges during the past year.
The report highlights 2024 activities and observations on NASA’s work, including:
strategic vision and agency governance Moon to Mars management future of U.S. presence in low Earth orbit health and medical risks in human space exploration “Over the past year, NASA has continued to make meaningful progress toward meeting the intent of the broad-ranging recommendations the panel has made over the last several years,” said retired U.S. Air Force Lt. Gen. Susan J. Helms, chair of ASAP. “We believe that the agency’s careful attention to vision, strategy, governance, and program management is vital to the safe execution of NASA’s complex and critical national mission.”
This year’s report reflects the panel’s continued focus on NASA’s strategies for risk management and safety culture in an environment of growing space commercialization. Specifically, the panel cites its 2021 recommendations for NASA on preparing for future challenges in a changing landscape, including the need to evaluate NASA’s approach to safety and technical risk and to evolve its role, responsibilities, and relationships with private sector and international partners.
Overall, the panel finds NASA is continuing to make progress with respect to the agency’s strategic vision, approach to governance, and integrated program management. The NASA 2040 new agencywide initiative is working to operationalize the agency’s vision and strategic objectives across headquarters and centers. With the establishment of NASA’s Moon to Mars Program Office in 2023, it finds NASA has implemented safety and risk management as a key focus for NASA’s Artemis campaign.
The 2024 report provides details on the concrete actions the agency should take to fulfill its previous recommendations and spotlights its recommendations for the agency moving ahead. It addresses safety assessments for Moon to Mars and current International Space Station operations, as well as risk-related issues surrounding NASA’s planned transition to commercial low Earth orbit destinations.
It covers relevant areas of human health and medicine in space and the impact of budget constraints and uncertainty on safety.
The annual report is based on the panel’s 2024 fact-finding and quarterly public meetings; direct observations of NASA operations and decision-making; discussions with NASA management, employees, and contractors; and the panel members’ experiences.
Congress established the panel in 1968 to provide advice and make recommendations to the NASA administrator on safety matters after the 1967 Apollo 1 fire claimed the lives of three American astronauts.
To learn more about the ASAP, and view annual reports, visit:
https://www.nasa.gov/asap
-end-
Jennifer Dooren / Elizabeth Shaw
Headquarters, Washington
202-358-1600
jennifer.m.dooren@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Feb 06, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Aerospace Safety Advisory Panel View the full article
-
By NASA
NASA’s Ethics Program provides training and counsel to NASA employees and is responsible for the day-to-day management of the agency-wide ethics program. Headquarters and Center Chief Counsels ethics officials support the ethics program in their respective localities.
A list of ethics officials at each NASA location can be found here: Headquarters and Center Ethics Officials.
Associate General Counsel, General Law Practice Group:
Katie Spear
Agency Counsel for Ethics:
Adam Greenstone
Current Employees
NASA employees have a responsibility to the United States Government and its citizens to place loyalty to the Constitution, laws, and ethics principles above private gain. As NASA employees, we need you to preserve NASA’s core value of integrity through your commitment to ethics and ethical decision-making. If you are faced with a question concerning your ethics obligations as a NASA employee, please contact a NASA ethics official before taking action.
Contact Information
What are your obligations? Know the rules. If you have questions, please ask an ethics official at your respective center.
Headquarter and Center Ethics Officials Financial Disclosure
As a NASA employee, you may be required to disclose your financial interests for one of two reasons: 1) You are in a position requiring by law that you file a Public Financial Disclosure (OGE Form 278)(PDF) report. This includes members of the Senior Executive Service (SES); SL or ST employees; holding another position classified above the GS-15 level; holding a “NASA excepted” position above a certain pay level; and Schedule C appointees. 2) Your duties are such that they raise an increased likelihood of a conflict of interest, for which you would file an (OGE Form 450)(PDF) report. If you are in a position subject to Public Financial Disclosure (or acting in one for more than 60 days), then you are subject to the Public Financial Disclosure report in which your report will be publicly available. If you are a General Schedule or other employee required to file OGE Form 450, your financial disclosure requirements will be less complex, and report will be confidential. For specific questions, please contact an ethics official.
Widely Attended Gatherings Determinations
Please click here to access the latest Widely Attended Gatherings Determinations. If you do not see a determination for the event in which you were invited to attend in your official capacity, please request guidance from your local ethics official.
Widely Attended Gatherings (WAGs) Determinations Outside Activities
NASA employees are subject to regulations regarding outside employment. They are prohibited from engaging in outside activities that conflict with their official duties. In addition, the NASA Supplemental Standards of Ethical Conduct for NASA Employees, 5 C.F.R. Part 6901, require prior approval for engaging in certain types of outside employment. In these instances, employees should request approval from their local ethics official prior to accepting such outside employment.
Note that the NASA Supplemental rules also prohibit NASA employees from engaging in outside employment with a NASA contractor, subcontractor, or grantee in connection with work performed by that entity for NASA; or a party to a Space Act Agreement, Commercial Launch Act agreement, or other agreement to which NASA is a party pursuant to specific statutory authority, if the employment is in connection with work performed under that agreement.
Employees in a leave status are subject to the same legal parameters.
Please reach out to your local ethics official for guidance.
Resources
14 General Principles, Office of Government Ethics Criminal Conflicts of Interest, Summary for Executive Brand Employees Introduction to the Standards of Ethical Conduct, Summary for Executive Branch Employees Standards of Ethics Conduct for Executive Branch Employees Supplemental Standards of Ethical Conduct for Employees of the National Aeronautics and Space Administration Hatch Act, Office of Special Counsel
Prospective Employees
We look forward to welcoming you to NASA! You are joining an organization that works to change the history of humanity and usher in a bold new era or discovery. We are depending on you to maintain the public trust and to preserve NASA’s ethical culture. Accordingly, NASA employees must comply with ethical standards that relate to outside employment, political activities, and business relationships, among other topics. NASA encourages prospective employees to learn more about these ethical standards along the path of joining our team. If ethics questions arise before or after you join NASA, please contact a NASA ethics official before taking action. What are your obligations? Know the rules. If you have questions, please ask an ethics official at your respective location.
Headquarter and Center Ethics Officials Financial Disclosure
As a NASA employee, you may be required to disclose your financial interests for one of two reasons: 1) You are in a position requiring by law that you file a Public Financial Disclosure (OGE Form 278)(PDF) report. This includes members of the Senior Executive Service (SES); SL or ST employees; holding another position classified above the GS-15 level; holding a “NASA excepted” position above a certain pay level; and Schedule C appointees. 2) Your duties are such that they raise an increased likelihood of a conflict of interest, for which you would file an (OGE Form 450)(PDF) report. If you are in a position subject to Public Financial Disclosure (or acting in one for more than 60 days), then you are subject to the Public Financial Disclosure report in which your report will be publicly available. If you are a General Schedule or other employee required to file OGE Form 450, your financial disclosure requirements will be less complex, and your report will be confidential. For specific questions, please contact an ethics official.
Resources
14 General Principles, Office of Government Ethics Criminal Conflicts of Interest, Summary for Executive Brand Employees Introduction to the Standards of Ethical Conduct, Summary for Executive Branch Employees Standards of Ethics Conduct for Executive Branch Employees Supplemental Standards of Ethical Conduct for Employees of the National Aeronautics and Space Administration Hatch Act, Office of Special Counsel Former Employees
The post-government employment ethics statute, 18 U.S.C. § 207, applies to a former NASA employee’s communication with NASA or the Government on behalf of the former employee’s non-federal employer. Former NASA employees should contact a NASA ethics official for advice before communications or otherwise interacting with NASA or the Government on behalf of their new employer because this criminal statute may be implicated. The Procurement Integrity Act also restricts individuals who were in certain contracting roles from accepting compensated work from certain contractors for a limited period.
Contact Information
If you have questions, please ask an ethics official at your respective center.
Headquarters and Center Ethics Officials Special Government Employees
A Special Government Employee (SGE) is an officer or employee “who is retained, designated, appointed, or employed to perform, with or without compensation, for not to exceed one hundred and thirty days during any consecutive period of three hundred and sixty-five consecutive days.” 18 U.S.C. § 202. Congress created the SGE category in 1962 to allow the federal Government to obtain the expertise it needs, while allowing experts to continue their private professional lives. As a result, some of the ethics statutes and regulations apply differently to SGEs than they do to regular executive branch employees, and some provisions do not apply at all.
Financial Disclosure
SGEs are required to file a financial disclosure report each year, usually a confidential financial disclosure report (OGE-450). Financial disclosure reporting helps NASA identify any possible financial conflicts of interest. SGEs are notified in advance of when to file.
Sample Confidential Financial Disclosure Report, Office of Government Ethics Confidential Financial Disclosure Guide, Office of Government Ethics Video on how to Complete a New Entrant Confidential Financial Disclosure Report Video on how to Complete an Annual Financial Disclosure Report Ethics Training
SGEs are required to receive annual ethics training by December 31st of each calendar year.
Contact Information
If you are a SGE and have questions, please contact the Headquarters Ethics Team by e-mail at hq-ethicsteam@nasa.gov or by phone at (202) 358-0550.
Resources
14 General Principles, Office of Government Ethics Criminal Conflicts of Interest, Summary for Executive Brand Employees Introduction to the Standards of Ethical Conduct, Summary for Executive Branch Employees Standards of Ethics Conduct for Executive Branch Employees Supplemental Standards of Ethical Conduct for Employees of the National Aeronautics and Space Administration ~~~~~~~~~~~~~~~~~~
Contact
Office of the General Counsel
NASA Headquarters
300 E Street SW Suite 9V30
Washington, DC 20546
Phone Number (202) 358-2450
Return to OGC Homepage OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.Blue Origin The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.
The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.
“Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”
NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.
“An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”
One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.
The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.
Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.
By Nancy Pekar, NASA’s Flight Opportunities program
Keep Exploring Discover More …
Space Technology Mission Directorate
Armstrong Flight Research Center
Flight Opportunities
Game Changing Development
Share
Details
Last Updated Feb 04, 2025 EditorLoura HallContactNancy J. Pekarnancy.j.pekar@nasa.gov Related Terms
Ames Research Center Armstrong Flight Research Center Artemis Flight Opportunities Program Game Changing Development Program Space Technology Mission Directorate View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Jeremy Frank, left, and Caleb Adams, right, discuss software developed by NASA’s Distributed Spacecraft Autonomy project. The software runs on spacecraft computers, currently housed on a test rack at NASA’s Ames Research Center in California’s Silicon Valley, and depicts a spacecraft swarm virtually flying in lunar orbit to provide autonomous position navigation and timing services at the Moon. NASA/Brandon Torres Navarrete Talk amongst yourselves, get on the same page, and work together to get the job done! This “pep talk” roughly describes how new NASA technology works within satellite swarms. This technology, called Distributed Spacecraft Autonomy (DSA), allows individual spacecraft to make independent decisions while collaborating with each other to achieve common goals – all without human input.
NASA researchers have achieved multiple firsts in tests of such swarm technology as part of the agency’s DSA project. Managed at NASA’s Ames Research Center in California’s Silicon Valley, the DSA project develops software tools critical for future autonomous, distributed, and intelligent swarms that will need to interact with each other to achieve complex mission objectives.
“The Distributed Spacecraft Autonomy technology is very unique,” said Caleb Adams, DSA project manager at NASA Ames. “The software provides the satellite swarm with the science objective and the ‘smarts’ to get it done.”
What Are Distributed Space Missions?
Distributed space missions rely on interactions between multiple spacecraft to achieve mission goals. Such missions can deliver better data to researchers and ensure continuous availability of critical spacecraft systems.
Typically, spacecraft in swarms are individually commanded and controlled by mission operators on the ground. As the number of spacecraft and the complexity of their tasks increase to meet new constellation mission designs, “hands-on” management of individual spacecraft becomes unfeasible.
Distributing autonomy across a group of interacting spacecraft allows for all spacecraft in a swarm to make decisions and is resistant to individual spacecraft failures.
The DSA team advanced swarm technology through two main efforts: the development of software for small spacecraft that was demonstrated in space during NASA’s Starling mission, which involved four CubeSat satellites operating as a swarm to test autonomous collaboration and operation with minimal human operation, and a scalability study of a simulated spacecraft swarm in a virtual lunar orbit.
Experimenting With DSA in Low Earth Orbit
The team gave Starling a challenging job: a fast-paced study of Earth’s ionosphere – where Earth’s atmosphere meets space – to show the swarm’s ability to collaborate and optimize science observations. The swarm decided what science to do on their own with no pre-programmed science observations from ground operators.
“We did not tell the spacecraft how to do their science,” said Adams. “The DSA team figured out what science Starling did only after the experiment was completed. That has never been done before and it’s very exciting!”
The accomplishments of DSA onboard Starling include the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft.
During the demonstration, which took place between August 2023 and May 2024, Starling’s swarm of spacecraft received GPS signals that pass through the ionosphere and reveal interesting – often fleeting – features for the swarm to focus on. Because the spacecraft constantly change position relative to each other, the GPS satellites, and the ionospheric environment, they needed to exchange information rapidly to stay on task.
Each Starling satellite analyzed and acted on its best results individually. When new information reached each spacecraft, new observation and action plans were analyzed, continuously enabling the swarm to adapt quickly to changing situations.
“Reaching the project goal of demonstrating the first fully autonomous distributed space mission was made possible by the DSA team’s development of distributed autonomy software that allowed the spacecraft to work together seamlessly,” Adams continued.
Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. NASA/Brandon Torres Navarrete Scaling Up Swarms in Virtual Lunar Orbit
The DSA ground-based scalability study was a simulation that placed virtual small spacecraft and rack-mounted small spacecraft flight computers in virtual lunar orbit. This simulation was designed to test the swarm’s ability to provide position, navigation, and timing services at the Moon. Similar to what the GPS system does on Earth, this technology could equip missions to the Moon with affordable navigation capabilities, and could one day help pinpoint the location of objects or astronauts on the lunar surface.
The DSA lunar Position, Navigation, and Timing study demonstrated scalability of the swarm in a simulated environment. Over a two-year period, the team ran close to one hundred tests of more complex coordination between multiple spacecraft computers in both low- and high-altitude lunar orbit and showed that a swarm of up to 60 spacecraft is feasible.
The team is further developing DSA’s capabilities to allow mission operators to interact with even larger swarms – hundreds of spacecraft – as a single entity.
Distributed Spacecraft Autonomy’s accomplishments mark a significant milestone in advancing autonomous distributed space systems that will make new types of science and exploration possible.
NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provides funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project.
Share
Details
Last Updated Feb 04, 2025 Related Terms
Ames Research Center CubeSats Game Changing Development Program Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
2 min read NASA Awards Contract for Airborne Science Flight Services Support
Article 23 hours ago 4 min read NASA Flight Tests Wildland Fire Tech Ahead of Demo
Article 4 days ago 4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Space Technology Mission Directorate
STMD Small Spacecraft Technology
Starling
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.