Jump to content

Hello Earth? Space Calling


NASA

Recommended Posts

  • Publishers
NASA astronaut Nick Hague with the International Space Station’s amateur or ham radio equipment during his current mission (right) and a previous flight five years ago (left)
NASA astronaut Nick Hague with the International Space Station’s amateur or ham radio equipment during his current mission (right) and a previous flight five years ago (left)
NASA

How it started versus how it’s going for astronaut Nick Hague with ISS Ham Radio on the space station.

Since November 2000, crew members like Hague have used ham radio to communicate with people on Earth through this educational program, also known as Amateur Radio on the International Space Station or ARISS. So far, there have been more than 1,700 events, directly engaging students and listeners from 49 U.S. states, 63 countries, and all seven continents. Students study the space station, radio waves, amateur radio technology, and related topics before their call from space, which encourages interest in STEM.

Now through Nov 17, 2024, ARISS is accepting applications from formal and informal educational institutions and organizations that want to host events in summer or fall of 2025. There is no charge for these calls from space, although host locations may incur some equipment-related costs. Local amateur radio clubs help hosts prepare for their contacts.

Read about how ISS Ham Radio and other station programs inspire students.

Melissa Gaskill
International Space Station Research Communications Team
Johnson Space Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      30 Years On, NASA’s Wind Is a Windfall for Studying our Neighborhood in Space
      An artist’s concept of NASA’s Wind spacecraft outside of Earth’s magnetosphere. NASA Picture it: 1994. The first World Wide Web conference took place in Geneva, the first Chunnel train traveled under the English Channel, and just three years after the end of the Cold War, the first Russian instrument on a U.S. spacecraft launched into deep space from Cape Canaveral. The mission to study the solar wind, aptly named Wind, held promise for heliophysicists and astrophysicists around the world to investigate basic plasma processes in the solar wind barreling toward Earth —key information for helping us understand and potentially mitigate the space weather environment surrounding our home planet.
      Thirty years later, Wind continues to deliver on that promise from about a million miles away at the first Earth-Sun Lagrange Point (L1). This location is gravitationally balanced between Earth and the Sun, providing excellent fuel economy that requires mere puffs of thrust to stay in place.
      According to Lynn Wilson, who is the Wind project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, fuel is only one indicator of Wind’s life expectancy, however. “Based on fuel alone, Wind can continue flying until 2074,” he said. “On the other hand, its ability to return data hinges on the last surviving digital tape recorder onboard.” 
      An artist’s concept shows a closeup of the Wind spacecraft. NASA Wind launched with two digital tape recorders to record data from all the instruments on the spacecraft and provide reports on the spacecraft’s thermal conditions, orientation, and overall health. Each recorder has two tape decks, A and B, which Wilson affectionately refers to as “fancy eight-tracks.”
      After six years of service, the first digital tape recorder failed in 2000 along with its two tape decks, forcing mission operators to switch to the second one. Tape Deck A on that one started showing signs of wear in 2016, so the mission operators now use Tape Deck B as the primary deck, with A as a backup.  
      “They built redundancy into the digital tape recorder system by building two of them, but you can never predict how technology will perform when it’s a million miles away, bathing in ionizing radiation,” said Wilson. “We’re fortunate that after 30 years, we still have two functioning tape decks.”
      Wind launched on Nov. 1, 1994, on a Delta IV rocket from Cape Canaveral Air Force Station in Florida. NASA Bonus Science
      When Wind launched on Nov. 1, 1994, nobody could have possibly predicted that exactly 30 years later, NASA would be kicking off “Bonus Science” month in the Heliophysics Big Year. Beyond the mission’s incredible track record of mesmerizing discoveries about the solar wind — some detailed on its 25th anniversary — Wind continues to deliver with bonus science abound.
      Opportunity and Collaborative Discovery
      Along its circuitous journey to L1, Wind dipped in and out of Earth’s magnetosphere more than 65 times, capturing the largest whistler wave — a low-frequency radio wave racing across Earth’s magnetic field — ever recorded in Earth’s Van Allen radiation belts. Wind also traveled ahead of and behind Earth — about 150 times our planet’s diameter in both directions, informing potential future missions that would operate in those areas with extreme exposure to the solar wind. It even took a side quest to the Moon, cruising through the lunar wake, a shadow devoid of solar wind on the far side of the Moon.
      Later, from its permanent home at L1, Wind was among several corroborating spacecraft that helped confirm what scientists believe is the brightest gamma-ray burst to occur since the dawn of human civilization. The burst, GRB 221009A, was first detected by NASA’s Fermi Gamma-ray Space Telescope in October 2022. Although not in its primary science objectives, Wind carries two bonus instruments designed to observe gamma-ray bursts that helped scientists confirm the burst’s origin in the Sagitta constellation.
      Academic Inspiration
      More than 7,200 research papers have been published using Wind data, and the mission has supported more than 100 graduate and post-graduate degrees.
      Wilson was one of those degree candidates. When Wind launched, Wilson was in sixth grade, on the football, baseball, and wrestling teams, with spare time spent playing video games and reading science fiction. He had a knack for science and considered becoming a medical doctor or an engineer before committing to his love of physics, which ultimately led to his current position as Wind’s project scientist. While pursuing his doctorate, he worked with Adam Szabo who was the Wind project scientist at NASA Goddard at the time and used Wind data to study interplanetary collisionless shock waves. Szabo eventually hired Wilson to work on the Wind mission team at Goddard.
      Also in sixth grade at the time, Joe Westlake, NASA Heliophysics division director,was into soccer and music, and was a voracious reader consumed with Tolkein’s stories about Middle Earth. Now he leads the NASA office that manages Wind.
      “It’s amazing to think that Lynn Wilson and I were in middle school, and the original mission designers and scientists have long since retired,” said Westlake. “When a mission makes it to 30 years, you can’t help but be inspired by the role it has played not only in scientific discovery, but in the careers of multiple generations of scientists.”
      By Erin Mahoney
      NASA Headquarters, Washington
      Share








      Details
      Last Updated Nov 01, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Science & Research Solar Wind The Sun Wind Mission Explore More
      6 min read NASA’s Hubble, Webb Probe Surprisingly Smooth Disk Around Vega


      Article


      4 hours ago
      5 min read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair


      Article


      1 day ago
      3 min read Buckle Up: NASA-Funded Study Explores Turbulence in Molecular Clouds


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By Amazing Space
      Lets Talk Space - The Search For Intelligent Life.
    • By NASA
      3 Min Read November’s Night Sky Notes: Snowballs from Space
      This diagram compares the size of the icy, solid nucleus of comet C/2014 UN271 (Bernardinelli-Bernstein) to several other comets. The majority of comet nuclei observed are smaller than Halley’s comet. They are typically a mile across or less. Comet C/2014 UN271 is currently the record-holder for big comets. And, it may be just the tip of the iceberg. There could be many more monsters out there for astronomers to identify as sky surveys improve in sensitivity. Though astronomers know this comet must be big to be detected so far out to a distance of over 2 billion miles from Earth, only the Hubble Space Telescope has the sharpness and sensitivity to make a definitive estimate of nucleus size. Credits:
      Illustration: NASA, ESA, Zena Levy (STScI) by Kat Troche of the Astronomical Society of the Pacific
      If you spotted comet C/2023 A3 (Tsuchinshan-ATLAS) in person, or seen photos online this October, you might have been inspired to learn more about these visitors from the outer Solar System. Get ready for the next comet and find out how comets are connected to some of our favorite annual astronomy events.
      Comet Composition
      A comet is defined as an icy body that is small in size and can develop a ‘tail’ of gas as it approaches the Sun from the outer Solar System. The key traits of a comet are its nucleus, coma, and tail. 
      The nucleus of the comet is comprised of ice, gas, dust, and rock. This central structure can be up to 80 miles wide in some instances, as recorded by the Hubble Space Telescope in 2022 – large for a comet but too small to see with a telescope. As the comet reaches the inner Solar System, the ice from the nucleus starts to vaporize, converting into gas. The gas cloud that forms around the comet as it approaches the Sun is called the coma. This helps give the comet its glow. But beware: much like Icarus, sometimes these bodies don’t survive their journey around the Sun and can fall apart the closer it gets.
      The most prominent feature is the tail of the comet. Under moderately dark skies, the brightest comets show a dust tail, pointed away from the Sun. When photographing comets, you can sometimes resolve the second tail, made of ionized gases that have been electronically charged by solar radiation. These ion tails can appear bluish, in comparison to the white color of the dust tail. The ion tail is also always pointed away from the Sun. In 2007, NASA’s STEREO mission captured images of C/2006 P1 McNaught and its dust tail, stretching over 100 million miles. Studies of those images revealed that solar wind influenced both the ion and dust tail, creating striations – bands – giving both tails a feather appearance in the night sky.
      Comet McNaught over the Pacific Ocean. Image taken from Paranal Observatory in January 2007. Credits: ESO/Sebastian Deiries Coming and Going
      Comets appear from beyond Uranus, in the Kuiper Belt, and may even come from as far as the Oort Cloud. These visitors can be short-period comets like Halley’s Comet, returning every 76 years. This may seem long to us, but long-period comets like Comet Hale-Bopp, observed from 1996-1997 won’t return to the inner Solar System until the year 4385. Other types include non-periodic comets like NEOWISE, which only pass through our Solar System once.
      But our experiences of these comets are not limited to the occasional fluffy snowball. As comets orbit the Sun, they can leave a trail of rocky debris in its orbital path. When Earth finds itself passing through one of these debris fields, we experience meteor showers! The most well-known of these is the Perseid meteor shower, caused by Comet 109P/Swift-Tuttle. While this meteor shower happens every August in the northern hemisphere, we won’t see Comet Swift-Tuttle again until the year 2126.
      The Perseids Meteor Shower. NASA/Preston Dyches See how many comets (and asteroids!) have been discovered on NASA’s Comets page, learn how you can cook up a comet, and check out our mid-month article where we’ll provide tips on how to take astrophotos with your smartphone!
      View the full article
    • By European Space Agency
      Image: The icy landscape of Ross Island in Antarctica is featured in this Copernicus Sentinel-2 image from 3 February 2024, during the austral summer. View the full article
    • By European Space Agency
      The Space Resources Challenge was launched last week, an opportunity for innovators to pioneer the technologies that will help humankind live and work sustainably on the Moon.
      View the full article
  • Check out these Videos

×
×
  • Create New...