Jump to content

Composite Pressure System


Recommended Posts

  • Publishers

Since the inception of the technology in the 1970s, White Sands Test Facility (WSTF) has been at the forefront of NASA’s testing and evaluation of composite pressure components, building on unique strengths in Oxygen Systems, Propellants and Aerospace Fluids, Hypervelocity Impact Testing, and Materials Flight Acceptance testing.Composite Pressure Vessel

Our team of experts continues to lead the way by studying damage tolerance and stress rupture while developing life extension protocols for NASA, industry partners, the Air Force, and government agencies.

WSTF technical advancements in composites are shared through dozens of test standards distributed by ANSI/AIAA, ASTM International, and research reports published for the NASA Engineering and Safety Center and NASA NDE Development Program.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Discovery Alert: Watch the Synchronized Dance of a 6-Planet System
      The discovery: Six planets orbit their central star in a rhythmic beat, a rare case of an “in sync” gravitational lockstep that could offer deep insight into planet formation and evolution.
      Key facts: A star smaller and cooler than our Sun hosts a truly strange family of planets: six “sub-Neptunes” – possibly smaller versions of our own Neptune – moving in a cyclic rhythm. This orbital waltz repeats itself so precisely it can be readily set to music.
      This animation shows six “sub-Neptune” exoplanets in rhythmic orbits around their star – with a musical tone as each planet passes a line drawn through the system. The line is where the planets cross in front of (transit) their star from Earth’s perspective. In these rhythms, known as “resonance,” the innermost planet makes three orbits for every two of the next planet out. Among the outermost planets, a pattern of four orbits for every three of the next planet out is repeated twice. Animation credit: Dr. Hugh Osborn, University of Bern Details: While multi-planet systems are common in our galaxy, those in a tight gravitational formation known as “resonance” are observed by astronomers far less often. In this case, the planet closest to the star makes three orbits for every two of the next planet out – called a 3/2 resonance – a pattern that is repeated among the four closest planets.
      Among the outermost planets, a pattern of four orbits for every three of the next planet out (a 4/3 resonance) is repeated twice. And these resonant orbits are rock-solid: The planets likely have been performing this same rhythmic dance since the system formed billions of years ago. Such reliable stability means this system has not suffered the shocks and shakeups scientists might typically expect in the early days of planet formation – smash-ups and collisions, mergers and breakups as planets jockey for position. And that, in turn, could say something important about how this system formed. Its rigid stability was locked in early; the planets’ 3/2 and 4/3 resonances are almost exactly as they were at the time of formation. More precise measurements of these planets’ masses and orbits will be needed to further sharpen the picture of how the system formed.
      Fun facts: The discovery of this system is something of a detective story. The first hints of it came from NASA’s TESS (the Transiting Exoplanet Survey Satellite), which tracks the tiny eclipses – the “transits” – that planets make as they cross the faces of their stars. Combining the TESS measurements, made in separate observations two years apart, revealed an assortment of transits for the host star, called HD 110067. But it was difficult to distinguish how many planets they represented, or to pin down their orbits.
      Eventually, astronomers singled out the two innermost planets, with orbital periods – “years” – of 9 days for the closest planet, 14 days for the next one out. A third planet, with a year about 20 days long, was identified with the help of data from CHEOPS, The European Space Agency’s CHaracterising ExOPlanets Satellite.
      Then the scientists noticed something extraordinary. The three planets’ orbits matched what would be expected if they were locked in a 3/2 resonance. The next steps were all about math and gravity. The science team, led by Rafael Luque of the University of Chicago, worked through a well-known list of resonances that potentially could be found in such systems, trying to match them to the remaining transits that had been picked up by TESS. The only resonance chain that matched up suggested a fourth planet in the system, with an orbit about 31 days long. Two more transits had been seen, but their orbits remained unaccounted for because they were only single observations (more than one transit observation is needed to pin down a planet’s orbit). The scientists again ran through the list of possible orbits if there were two additional, outer planets that fit the expected chain of resonances across the whole system. The best fit they found: a fifth planet with a 41-day orbit, and a sixth just shy of 55.
      At this point the science team almost hit a dead end. The slice of the TESS observations that had any chance of confirming the predicted orbits of the two outer planets had been set aside during processing. Excessive light scattered through the observation field by Earth and the Moon seemed to make them unusable. But not so fast. Scientist Joseph Twicken, of the SETI Institute and of the NASA Ames Research Center, took notice of the scattered light problem. He knew that scientist David Rapetti, also of Ames and of the Universities Space Research Association, happened to be working on a new computer code to recover transit data thought to be lost because of scattered light. At Twicken’s suggestion, Rapetti applied his new code to the TESS data. He found two transits for the outer planets – exactly where the science team led by Luque had predicted.
      The discoverers: An international team of researchers led by Rafael Luque, of the University of Chicago, published a paper online on the discovery, “A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067,” in the journal Nature on Nov. 29.
      Tracing a link between two neighbour planet at regular time interval along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system create together a mesmerising geometric pattern due to their resonance-chain. Credit: Thibaut Roger/NCCR PlanetS, CC BY-NC-SA 4.0 View the full article
    • By NASA
      9 Min Read Temperatures Across Our Solar System
      An illustration of our solar system. Planets and other objects are not to scale. Credits:
      NASA What’s the weather like out there? We mean waaaay out there in our solar system – where the forecast might not be quite what you think. 
      Let’s look at the mean temperature of the Sun, and the planets in our solar system. The mean temperature is the average temperature over the surface of the rocky planets: Mercury, Venus, Earth, and Mars. Dwarf planet Pluto also has a solid surface. But since the gas giants don’t have a surface, the mean is the average temperature at what would be equivalent at sea level on Earth. 
      An illustration of planets in our solar system showing their mean temperatures. Planets and dwarf planet Pluto are not to scale.  NASA Let’s start with our Sun. You already know the Sun is hot. OK, it’s extremely hot! But temperatures on the Sun also are a bit puzzling. 
      An image of the Sun taken Oct. 30, 2023, by NASA’s Solar Dynamics Observatory. NASA/SDO The hottest part of the Sun is its core, where temperatures top 27 million°F (15 million°C). The part of the Sun we call its surface – the photosphere – is a relatively cool 10,000° F (5,500°C). In one of the Sun’s biggest mysteries, the Sun’s outer atmosphere, the corona, gets hotter the farther it stretches from the surface. The corona reaches up to 3.5 million°F (2 million°C) – much, much hotter than the photosphere.
      So some temperatures on the Sun are a bit upside down. How about the planets? Surely things are cooler on the planets that are farther from the Sun. 
      Well, mostly. But then there’s Venus. 
      As it sped away from Venus, NASA’s Mariner 10 spacecraft captured this seemingly peaceful view of a planet the size of Earth, wrapped in a dense, global cloud layer. But, contrary to its serene appearance, the clouded globe of Venus is a world of intense heat, crushing atmospheric pressure and clouds of corrosive acid. NASA/JPL-Caltech Venus is the second closest planet to the Sun after Mercury, with an average distance from the Sun of about 67 million miles (108 million kilometers). It takes sunlight about six minutes to travel to Venus. 
      Venus also is Earth’s closest neighbor and is similar in size. It has even been called Earth’s twin. But Venus is shrouded in clouds and has a dense atmosphere that acts as a greenhouse and heats the surface to above the melting point of lead. It has a mean surface temperature of 867°F (464°C). 
      So Venus – not Mercury – is the hottest planet in our solar system. Save that bit of info for any future trivia contests.
      Maybe Venus is hotter, but Mercury is the closest planet to the Sun. Surely it gets hot, too? 
      Mercury as seen from NASA’s MESSENGER, the first spacecraft to orbit Mercury. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington Mercury is about 36 million miles (57 million kilometers) from the Sun. From this distance, it takes sunlight about three minutes to travel to Mercury. Even though it’s sitting right next to the Sun – relatively speaking – Mercury gets extremely cold at night. It has a mean surface temperature of 333°F (167°C). Daytime temperatures get much hotter than the mean, and can reach highs of 800°F (430°C). But without an atmosphere thick enough to hold in the heat at night, temperatures can dip as low as -290°F (-180°C). 
      Ahhh, Earth. We know about the weather here, right? Even Earth has some temperatures you may not have heard about.
      An image of Earth from the Deep Space Climate Observatory, or DSCOVR. NASA Earth is an average of 93 million miles (150 million kilometers) from the Sun. It takes about eight minutes for light from the Sun to reach our planet.
      Our homeworld is a dynamic and stormy planet with everything from clear, sunny days, to brief rain showers, to tornados, to raging hurricanes, to blizzards, and dust storms. But in spite of its wide variety of storms – Earth generally has very hospitable temperatures compared to the other planets. The mean surface temperature on Earth is 59°F (15°C). But Earth days have some extreme temperatures. According to NOAA, Death Valley holds the record for the world’s highest surface air temperature ever recorded on Earth: 134°F (56.7°C) observed at Furnace Creek (Greenland Ranch), California, on July 10, 1913. Earth’s lowest recorded temperature was -128.6°F (89.2°C) at Vostok Station, Antarctica, on July 21, 1983, according to the World Meteorological Organization. 
      NASA missions have found lots of evidence that Mars was much wetter and warmer, with a thicker atmosphere, billions of years ago. How about now? 
      Side-by-side animated images show how a 2018 global dust storm enveloped the Red Planet. The images were taken by NASA’s Mars Reconnaissance Orbiter (MRO). NASA/JPL-Caltech/MSSS Mars is an average distance of 142 million miles (228 million kilometers) from the Sun. From this distance, it takes about 13 minutes for light to travel from the Sun to Mars.
      The median surface temperature on Mars is -85°F (-65°C). Because the atmosphere is so thin, heat from the Sun easily escapes Mars. Temperatures on the Red Planet range from the 70s°F (20s°C) to -225°F (-153°C). Occasionally, winds on Mars are strong enough to create dust storms that cover much of the planet. After such storms, it can be months before all of the dust settles.
      Two NASA rovers on Mars have weather stations. You can check the daily temps at their locations:
      Mars Weather Report From Perseverance Curiosity Daily Weather Report The ground temperature around the Perseverance rover ranges from about -136°F to 62°F (-93°C to 17°C). The air temperature near the surface ranges from about  -118°F to 8°F (-83°C to -13°C).
      As planets move farther away from the Sun, it really cools down fast! Since gas giants Jupiter and Saturn don’t have a solid surface, temperatures are taken from a level in the atmosphere equal in pressure to sea level on Earth. The same goes for the ice giants Uranus and Neptune.
      NASA’s Juno spacecraft took this image during a flyby of Jupiter. This view highlights Jupiter’s most famous weather phenomenon, the persistent storm known as the Great Red Spot. Citizen scientist Kevin M. Gill created this image using data from the spacecraft’s JunoCam imager. Enhanced image by Kevin M. Gill (CC-BY) based on images provided courtesy of NASA/JPL-Caltech/SwRI/MSSS Jupiter’s stripes and swirls are beautiful, but they are actually cold, windy clouds of ammonia and water, floating in an atmosphere of hydrogen and helium. The planet’s iconic Great Red Spot is a giant storm bigger than Earth that has raged for hundreds of years. The mean temperature on Jupiter is -166°F (-110°C). 
      Jupiter is an average distance of 484 million miles (778 million kilometers) from the Sun. From this distance, it takes sunlight 43 minutes to travel from the Sun to Jupiter. Jupiter has the shortest day in the solar system. One day on Jupiter takes only about 10 hours (the time it takes for Jupiter to rotate or spin around once), and Jupiter makes a complete orbit around the Sun (a year in Jovian time) in about 12 Earth years (4,333 Earth days).
      Jupiter’s equator is tilted with respect to its orbital path around the Sun by just 3 degrees. This means the giant planet spins nearly upright and does not have seasons as extreme as other planets do.
      As we keep moving out into the solar system, we come to Saturn – the sixth planet from the Sun and the second largest planet in our solar system. Saturn orbits the Sun from an average distance of 886 million miles (1.4 billion kilometers). It takes sunlight 80 minutes to travel from the Sun to Saturn.
      This series of images from NASA’s Cassini spacecraft shows the development of the largest storm seen on Saturn since 1990. These true-color and composite near-true-color views chronicle the storm from its start in late 2010 through mid-2011, showing how the distinct head of the storm quickly grew large but eventually became engulfed by the storm’s tail. NASA/JPL-Caltech/Space Science Institute Like fellow gas giant Jupiter, Saturn is a massive ball made mostly of hydrogen and helium and it doesn’t have a true surface. The mean temperature is -220°F (-140°C). 
      In addition to the bone-chilling cold, the winds in the upper atmosphere of Saturn reach 1,600 feet per second (500 meters per second) in the equatorial region. In contrast, the strongest hurricane-force winds on Earth top out at about 360 feet per second (110 meters per second). And the pressure – the same kind you feel when you dive deep underwater – is so powerful it squeezes gas into a liquid.
      This colorful movie made with images from NASA’s Cassini spacecraft is the highest-resolution view of the unique six-sided jet stream at Saturn’s north pole known as “the hexagon.” NASA/JPL-Caltech/SSI/Hampton University Saturn’s north pole has an interesting atmospheric feature – a six-sided jet stream. This hexagon-shaped pattern was first noticed in images from the Voyager I spacecraft and was more closely observed by the Cassini spacecraft. Spanning about 20,000 miles (30,000 kilometers) across, the hexagon is a wavy jet stream of 200-mile-per-hour winds (about 322 kilometers per hour) with a massive, rotating storm at the center. There is no weather feature like it anywhere else in the solar system.
      Crane your neck to the side while we go check out the weather on Uranus, the sideways planet.
      This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986. NASA/JPL-Caltech The seventh planet from the Sun with the third largest diameter in our solar system, Uranus is very cold and windy. It has a mean temperature of  -320°F (-195°C). Uranus rotates at a nearly 90-degree angle from the plane of its orbit. This unique tilt makes Uranus appear to spin sideways, orbiting the Sun like a rolling ball. And like Saturn, Uranus has rings. The ice giant is surrounded by 13 faint rings and 27 small moons. 
      Now we move on to the last major planet in our solar system – Neptune. What’s the weather like there? Well you would definitely need a windbreaker if you went for a visit. Dark, cold, and whipped by supersonic winds, giant Neptune is the eighth and most distant major planet orbiting our Sun. The mean temperature on Neptune is -330°F (-200°C). 
      And not to be outdone by Jupiter and its Great Red Spot, Neptune has the Great Dark Spot – and Scooter. Yep, Scooter. 
      Voyager 2 photographed these features on Neptune in 1989.  NASA/JPL-Caltech This photograph of Neptune was created from two images taken by NASA’s Voyager 2 spacecraft in August 1989. It was the first and last time a spacecraft came close to Neptune. The image shows three of the features that Voyager 2 monitored. At the north (top) is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance. To the south of the Great Dark Spot is the bright feature that Voyager scientists nicknamed “Scooter.” Still farther south is the feature called “Dark Spot 2,” which has a bright core. 
      More than 30 times as far from the Sun as Earth, Neptune is not visible to the naked eye. In 2011, Neptune completed its first 165-year orbit of the Sun since its discovery. 
      That wraps up forecasting for the major planets.
      But there is one more place we need to check out. Beyond Neptune is a small world, with a big heart – dwarf planet Pluto.
      New Horizons scientists use enhanced color images to detect differences in the composition and texture of Pluto’s surface. NASA/JHUAPL/SwRI With a mean surface temperature of -375°F (-225°C), Pluto is considered too cold to sustain life. Pluto’s interior is warmer, however, and some think there may be an ocean deep inside.
      From an average distance of 3.7 billion miles (5.9 billion kilometers) away from the Sun, it takes sunlight 5.5 hours to travel to Pluto. If you were to stand on the surface of Pluto at noon, the Sun would be 1/900 the brightness it is here on Earth. There is a moment each day near sunset here on Earth when the light is the same brightness as midday on Pluto.
      So the next time you’re complaining about the weather in your spot here on Earth, think about Pluto and all the worlds in between. 
      Keep Exploring Discover More Topics From NASA

      Humans in Space

      Climate Change

      Solar System

      View the full article
    • By NASA
      Artist’s concept showing two of the seven planets discovered orbiting a Sun-like star. The system, called Kepler-385, was identified using data from NASA’s Kepler mission.NASA/Daniel Rutter A system of seven sweltering planets has been revealed by continued study of data from NASA’s retired Kepler space telescope: Each one is bathed in more radiant heat from their host star per area than any planet in our solar system. Also unlike any of our immediate neighbors, all seven planets in this system, named Kepler-385, are larger than Earth but smaller than Neptune. It is one of only a few planetary systems known to contain more than six verified planets or planet candidates. The Kepler-385 system is among the highlights of a new Kepler catalog that contains almost 4,400 planet candidates, including more than 700 multi-planet systems.
      “We’ve assembled the most accurate list of Kepler planet candidates and their properties to date,” said Jack Lissauer, a research scientist at NASA’s Ames Research Center in California’s Silicon Valley and lead author on the paper presenting the new catalog. “NASA’s Kepler mission has discovered the majority of known exoplanets, and this new catalog will enable astronomers to learn more about their characteristics.”
      At the center of the Kepler-385 system is a Sun-like star about 10% larger and 5% hotter than the Sun. The two inner planets, both slightly larger than Earth, are probably rocky and may have thin atmospheres. The other five planets are larger – each with a radius about twice the size of Earth’s – and expected to be enshrouded in thick atmospheres.
      Artist’s concept of Kepler-385, the seven-planet system revealed in a new catalog of planet candidates discovered by NASA’s Kepler space telescope.NASA/Daniel Rutter The ability to describe the properties of the Kepler-385 system in such detail is testament to the quality of this latest catalog of exoplanets. While the Kepler mission’s final catalogs focused on producing lists optimized to measure how common planets are around other stars, this study focuses on producing a comprehensive list that provides accurate information about each of the systems, making discoveries like Kepler-385 possible.
      The new catalog uses improved measurements of stellar properties and calculates more accurately the path of each transiting planet across its host star. This combination illustrates that when a star hosts several transiting planets, they typically have more circular orbits than when a star hosts only one or two.
      Kepler’s primary observations ceased in 2013 and were followed by the telescope’s extended mission, called K2, which continued until 2018. The data Kepler collected continues to reveal new discoveries about our galaxy. After the mission already showed us there are more planets than stars, this new study paints a more detailed picture of what each of those planets and their home systems look like, giving us a better view of the many worlds beyond our solar system.
      The research article, “Updated Catalog of Kepler Planet Candidates: Focus on Accuracy and Orbital Periods” is forthcoming in The Journal of Planetary Science.
      Learn more:
      Listen to a sonification of the orbit data of the seven planets in the Kepler-385 system: https://www.youtube.com/watch?v=2BCiOTJjcQQ

      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By NASA
      5 Min Read NASA’s First Two-way End-to-End Laser Communications System
      NASA's ILLUMA-T payload communicating with LCRD over laser signals. Credits: NASA/Dave Ryan NASA is demonstrating laser communications on multiple missions – showcasing the benefits infrared light can have for science and exploration missions transmitting terabytes of important data.

      The International Space Station is getting a “flashy” technology demonstration this November. The ILLUMA-T (Integrated Laser Communications Relay Demonstration Low Earth Orbit User Modem and Amplifier Terminal) payload is launching to the International Space Station to demonstrate how missions in low Earth orbit can benefit from laser communications.

      Laser communications uses invisible infrared light to send and receive information at higher data rates, providing spacecraft with the capability to send more data back to Earth in a single transmission and expediting discoveries for researchers.
      NASA’s ILLUMA-T payload was delivered to SpaceX Dragonland, and the team integrated the payload into the Dragon trunk in preparation for its November launch. SpaceX Managed by NASA’s Space Communications and Navigation (SCaN) program, ILLUMA-T is completing NASA’s first bi-directional, end-to-end laser communications relay by working with the agency’s LCRD (Laser Communications Relay Demonstration). LCRD launched in December 2021 and is currently demonstrating the benefits of laser communications from geosynchronous orbit by transmitting data between two ground stations on Earth in a series of experiments.

      Some of LCRD’s experiments include studying atmospheric impact on laser signals, confirming LCRD’s ability to work with multiple users, testing network capabilities like delay/disruption tolerant networking (DTN) over laser links, and investigating improved navigation capabilities.
      The Laser Communications Relay Demonstration (LCRD) launched in December 2021. Together, LCRD and ILLUMA-T will complete NASA’s first bi-directional end-to-end laser communications system. Dave Ryan Once ILLUMA-T is installed on the space station’s exterior, the payload will complete NASA’s first in-space demonstration of two-way laser relay capabilities.
      How It Works:
      ILLUMA-T’s optical module is comprised of a telescope and two-axis gimbal which allows pointing and tracking of LCRD in geosynchronous orbit. The optical module is about the size of a microwave and the payload itself is comparable to a standard refrigerator.
      NASA’s ILLUMA-T payload in a Goddard cleanroom. The payload will be installed on the International Space Station and demo higher data rates with NASA’s Laser Communications Relay Demonstration.Dennis Henry ILLUMA-T will relay data from the space station to LCRD at 1.2 gigabits-per-second, then LCRD will send the data down to optical ground stations in California or Hawaii. Once the data reaches these ground stations, it will be sent to the LCRD Mission Operations Center located at NASA’s White Sands Complex in Las Cruces, New Mexico. After this, the data will be sent to the ILLUMA-T ground operations teams at the agency’s Goddard Space Flight Center in Greenbelt, Maryland. There, engineers will determine if the data sent through this end-to-end relay process is accurate and of high-quality. 

      “NASA Goddard’s primary role is to ensure successful laser communications and payload operations with LCRD and the space station,” said ILLUMA-T Deputy Project Manager Matt Magsamen. “With LCRD actively conducting experiments that test and refine laser systems, we are looking forward to taking space communications capabilities to the next step and watching the success of this collaboration between the two payloads unfold.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      ILLUMA-T and LCRD demonstrating laser communications. Once ILLUMA-T transmits its first beam of laser light through its optical telescope to LCRD, the end-to-end laser communications experiment begins. After its experimental phase with LCRD, ILLUMA-T could become an operational part of the space station and substantially increase the amount of data NASA can send to and from the orbiting laboratory.
      Transmitting data to relay satellites is no new feat for the space station. Since its completion in 1998 the orbiting laboratory has relied on the fleet of radio frequency relay satellites known as NASA’s Tracking and Data Relay Satellites, which are part of the agency’s Near Space Network. Relay satellites provide missions with constant contact with Earth because they can see the spacecraft and a ground antenna at the same time.

      Laser communications could be a game-changer for researchers on Earth with science and technology investigations aboard the space station. Astronauts conduct research in areas like biological and physical sciences, technology, Earth observations, and more in the orbiting laboratory for the benefit of humanity. ILLUMA-T could provide enhanced data rates for these experiments and send more data back to Earth at once. In fact, at 1.2 Gbps, ILLUMA-T can transfer the amount of data equivalent to an average movie in under a minute.

      The ILLUMA-T / LCRD end-to-end laser communications relay system is one small step for NASA, but one giant leap for space communications capabilities. Together with previous and future demonstrations, NASA is showcasing the benefits laser communications systems can have for both near-Earth and deep space exploration.

      The goal of these demonstrations is to integrate laser communications as a capability within NASA’s space communications networks: the Near Space Network and Deep Space Network. If you are a mission planner interested in using laser communications, please reach out to scan@nasa.gov.
      NASA’s Laser Communications Roadmap – proving the technology’s validity in a variety of regimes. NASA / Dave Ryan The ILLUMA-T payload is funded by the Space Communications and Navigation (SCaN) program at NASA Headquarters in Washington. ILLUMA-T is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Partners include the International Space Station program office at NASA’s Johnson Space Center in Houston and the Massachusetts Institute of Technology (MIT) Lincoln Laboratory in Lexington, Massachusetts.

      LCRD is led by Goddard and in partnership with NASA’s Jet Propulsion Laboratory in Southern California and the MIT Lincoln Laboratory. LCRD is funded through NASA’s Technology Demonstration Missions program, part of the Space Technology Mission Directorate, and the Space Communications and Navigation (SCaN) program at NASA Headquarters in Washington.

      By Kendall Murphy and Katherine Schauer
      Goddard Space Flight Center, Greenbelt, MD
      Last Updated Oct 25, 2023 Editor Related Terms
      Communicating and Navigating with Missions General Goddard Space Flight Center ILLUMA-T Laser Communications Relay Space Communications & Navigation Program Space Communications Technology Explore More
      3 min read New Video Highlights Accessibility and Inclusion at NASA  
      Article 2 hours ago 6 min read NASA’s Webb Makes First Detection of Heavy Element From Star Merger
      Article 2 hours ago 5 min read How NASA Is Protecting Europa Clipper From Space Radiation
      Article 23 hours ago View the full article
  • Check out these Videos

  • Create New...